Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
В основном моделирование развития пожара провожу в специализированном программном обеспечении Fire Dynamics Simulator (FDS), оно используется от Японии до США при обосновании отступлений требований пожарной безопасности. При моделировании развития пожара очень много времени занимает обработка результатов моделирования.
(10.02.2025 - 16.02.2025)
А теперь о том, что происходило в последнее время на других ресурсах.
Если вы когда-нибудь занимались машинным обучением, то знаете — перед тем как строить модель, нужно как следует изучить свои данные. Этот этап называется EDA (Exploratory Data Analysis), или разведочный анализ данных (РАД). Он критически важен — именно здесь мы находим скрытые закономерности, выдвигаем первые гипотезы и понимаем, как лучше обработать данные для будущей модели.
При разработке приложений на основе больших языковых моделей (LLM, Large Language Model) встает вопрос: вызывать ли модель напрямую через API (например, OpenAI) или использовать специализированные фреймворки вроде LangChain или LangGraph.
Алгоритм Краскала — это жадный алгоритм, который используется для нахождения минимального остовного дерева (MST) в связном, взвешенном и неориентированном графе. В контексте генерации лабиринтов он применяется для создания структуры, где каждая ячейка соединена с другими без циклов и недостижимых областей. В результате получается так называемый "идеальный лабиринт", в котором из любой точки можно попасть в любую другую по единственному пути.
Сегодня разберем два популярных инструмента — Msgspec и DataClasses. Оба помогают структурировать данные, добавить энтерпрайзности в проект, но подходы у них разные. Какой из них быстрее и удобнее, где их лучше применять?
Если вам приходилось писать высоконагруженные сетевые приложения на Python, то вы, скорее всего, сталкивались с тем, что стандартные механизмы работы с вводом‑выводом — select(), poll() и даже asyncio — не справляются с большой нагрузкой.
Предварительная обработка текстовых данных: ключевые этапы и методыТекстовые данные — один из самых сложных типов данных для анализа из-за их неструктурированной природы и высокой вариативности. Чтобы превратить "сырой" текст в информацию, пригодную для машинного обучения или лингвистического анализа, требуется предварительная обработка.
В этой статье мы хотим поделиться опытом разработки экосистемы (если есть слово поудачнее, то обязательно поделитесь в комментариях) сервисов для упрощения процесса разработки моделей и решений по CV.
RoBERTa — улучшенная версия модели BERT, разработанная Facebook AI. Она показывает отличные результаты в задачах обработки естественного языка, таких как классификация текстов и генерация ответов.Построим конкурентоспособный сайт расстановки пунктуации, обучив свою нейронную сеть.
Приветствую, дорогой читатель. Хочу представить вашему вниманию пример, как можно упростить себе жизнь при исследовании кода программ, используя скриптинг в Ghidra.Если вы уже имели опыт работы с дизассемблером, то заметили, что читать его вывод не так легко, если целью является понять более высокие абстракции, заложенные в нём.
СМОТРИТЕ КОММЕНТАРИИ!
В данной статье я хочу представить выстраданную годами структуру проекта и организацию его окружения, которые помогают избежать большей части проблем, связанных с локальным разворачиванием проекта.Пример будет представлен для Django проекта и PDM в качестве менеджера зависимостей, но концептуально должен подходить для любого проекта на любом языке и с любым набором сервисов.
В этой статье я хочу поделиться результатом своих исследований в области моделирования систем управления двигателями переменного тока.
Еще на этапе создания модели следует проделать работу направленную на замедление ее устаревания.Реализацию процесса работы с устареванием моделей в ML можно разделить на 4 шага.В этой части мы с вами узнаем как создать надежную и долговечную модель, а также получить много полезной информации, которая поможет нам бороться с устареванием в будущем.Мы пройдем полный путь создания модели и работы над замедлением ее устаревания.
Немного вызывающее название статьи отсылает к известной работе Внимание - всё, что вам нужно. На этот раз речь пойдет о качестве данных, на которых обучают LLM. Оказывается, качественный учебник (как концентрат знаний в любой сфере) в разы сокращает потребность и в памяти, и в мощности GPU, и в деньгах инвесторов...
Современные крупные языковые модели, такие как ChatGPT, Claude или Gemini, поражают своими возможностями. Но главный вопрос остаётся открытым: как именно они думают?
Модуль для управления процессами в ОС. Скачать можно по ссылке: https://pypi.python.org/pypi/psutil/
Django-приложение для гибкой фильтрации объектов модели (querysets). Скачать можно по ссылке: https://pypi.python.org/pypi/django-filter/
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
XML/HTML парсер. Скачать можно по ссылке: https://pypi.python.org/pypi/beautifulsoup4/
Утилита для управления модулями в Python. Скачать можно по ссылке: https://pypi.python.org/pypi/pip/
Мощный и быстрый модуль для обработки XML/HTML. Скачать можно по ссылке: https://pypi.python.org/pypi/lxml/
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
Инструмент создания виртуального рабочего окружения. Скачать можно по ссылке: https://pypi.python.org/pypi/virtualenv
Модуль для работы с многомерными массивами. Скачать можно по ссылке: https://pypi.python.org/pypi/numpy/
Обработка результатов моделирования Fire Dynamics Simulator на Python (часть 2)
VibeVoice - Open-Source Text-to-Speech
Какой Python-фреймворк выбрать: Django, Flask или FastAPI?
Предиктивная аналитика в нефтедобыче или как я проходил практику
Comparison of New Python Type Checkers: Ty, Pyrefly, and Zuban
CodeBoarding - Interactive Diagrams for Code
Почему HH не автоматизирует поиск работы и как мы построили на этом стартап
Собираем «идеального душнилу»: как создать ИИ-агента, который завалит вашего чат-бота
Визуализация управления памятью в Python: что творится внутри?
prek - Better pre-commit, re-engineered in Rust
Memento - Fine-tuning LLM Agents without Fine-tuning LLMs
How to Drop Null Values in pandas
Случайный ИИ успех: Как мы встроили нейросеть в приложение для автосервисов и сорвали куш