12.03.2018       Выпуск 221 (12.03.2018 - 18.03.2018)       Статьи

Первые шаги в Машинном обучении

Привет дорогой друг, ты всегда хотел попробовать машинное обучение, но область выглядела загадочно и сложно? Я хотел бы поделиться с тобой моей историей как я сделал первые шаги в машинном обучении, при нулевом знании Python и высшей математики на небольшом примере.

Читать>>



Экспериментальная функция:

Ниже вы видите текст статьи по ссылке. По нему можно быстро понять ссылка достойна прочтения или нет

Просим обратить внимание, что текст по ссылке и здесь может не совпадать.

Привет, дорогой друг, ты всегда хотел попробовать машинное обучение, но область выглядела загадочно и сложно? Я хотел бы поделиться с тобой моей историей как я сделал первые шаги в машинном обучении, при нулевом знании Python и высшей математики на небольшом примере.

Преамбула

Я работаю веб разработчиком в консалтинговой компании, и иногда настает момент, когда один проект уже кончился, а на следующий еще не назначили. Каждый оказавшийся на скамейке запасных, чтоб не просто штаны просиживать должен внести вклад в интеллектуальную собственность компании. Как правило это либо создание обучающих материалов по теме, которой владеет автор, либо изучение новой технологии и последующая демонстрация или презентация в конце недели.

Решил, раз есть такая возможность, то попробовать коснуться темы Машинного обучения, поскольку это стильно, модно и молодежно. Из предыдущих познаний в данной теме у меня были только пара презентаций от ведущего разработчика, которые имели скорее популяризаторский нежели информационный оттенок.

Я определил конкретную проблему, чтобы решить ее с помощью машинного обучения и начал копать. Хочу заметить, что имея конечную цель было легче ориентироваться в потоке информации.





Втыкаем лопату

Первым делом я отправился на официальный сайт TensorFlow и прочитал

ML for Beginners

и

TensorFlow for beginners

. Материалы на английском.

TensorFlow это поделка команды Google и наиболее популярная библиотека для работы с машинным обучением, которая поддерживает Python, Java, C++, Go, а также возможность использования вычислительных мощностей графической видеокарты для расчетов сложных нейросетей.

В своих поисках я нашел еще одну библиотеку для машинного обучения

Scikit-learn

ориентированную на Python. Плюс этой библиотеки, в большом количестве алгоритмов для машинного обучения прямо из коробки, что было несомненным плюсом в моем случае, так как презентация в пятницу, и очень хотелось продемонстрировать рабочую модель.

В поисках готовых примеров я наткнулся на

туториал

по определению языка на котором написан текст с помощью Scikit-learn.

Итак, моей задачей было обучить модель определять наличие SQL инъекции в текстовой строке. (Конечно, можно решить эту задачу с помощью регулярных выражений, но в образовательных целях можно

по воробьям стрелять из пушки

)

Первым делом, первым делом датасеты...

Тип задачи который я пытаюсь решить это классификация, то есть алгоритм должен в ответ на вскормленные данные выдать мне к какой из категорий эти данные относятся.

Данные в которых алгоритм будет искать закономерности называются

features

.

Категория, к которой относится та или иная feature, называется

label

. Важно отметить, что входные данные могут иметь несколько features, но всего один label.

В классическом примере машинного обучения, определения разновидностей цветков ириса по длине пестиков и тычинок, каждый отдельный столбец с информацией о размере это

feature

, а последний столбец, который означает к какому из подвидов ириса относится цветок с такими значениями это

label

Способ, которым я буду решать проблему классификации, называется supervised learning, или обучение под надзором. Это значит, что в процессе обучения алгоритм будет получать и features и labels.

Шаг номер один в решении любой задачи с помощью машинного обучения это сбор данных, на которых эта самая машина и будет учится. В идеальном мире это должны быть реальные данные, но, к сожалению, в интернете я не смог найти ничего что бы меня удовлетворило. Решено было сгенерировать данные самостоятельно.

Я написал скрипт, который генерировал случайные адреса электронной почты и SQL инъекции. В итоге в моем csv файле получалось три типа данных: случайные имейлы (20 тыс.), случайные имейлы с SQL инъекцией (20 тыс.) и чистые SQL инъекции (10 тыс.). Выглядело это примерно вот так:

Теперь исходные данные нужно считать. Функция возвращает лист X, в котором содержатся features, лист Y, в котором содержатся labels для каждой feature и лист label_names, который просто содержит текстовое определения для labels, нужен для удобства при выводе результатов.

import csv

def get_dataset():
   X = []
   y = []
   label_names = ["safe data","Injected email"]
   with open('trainingSet.csv') as csvfile:
       readCSV = csv.reader(csvfile, delimiter='\n')
       for row in readCSV:
           splitted = row[0].split(',')
           X.append(splitted[0])
           y.append(splitted[1])

          
        
   print("\n\nData set features {0}". format(len(X)))
   print("Data set labels   {0}\n". format(len(y)))

   print(X)

   return X, y, label_names

Далее эти данные нужно разбить на тренировочный сет и на тестовый. В этом нам поможет заботливо написанная для нас функция cross_validation.train_test_split(), которая перетасует записи и вернет нам четыре сета данных — два тренировочных и два тестовых для features и labels.

# Split the dataset on training and testing sets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,y,test_size=0.2,random_state=0)

Затем мы инициализируем объект vectorizer, который будет считывать переданные в него данные по одному символу, комбинировать их в

N-граммы

и переводить в числовые векторы, который способен воспринимать алгоритм машинного обучения.

#Setting up vectorizer that will convert dataset into vectors using n-gram
vectorizer = feature_extraction.text.TfidfVectorizer(ngram_range=(1, 4), analyzer='char')

Скармливаем данные

Следующий шаг мы инициализируем pipeline и передадим в него ранее созданный vectorizer и алгоритм, которым мы хотим анализировать наш дата сет. В данном мы будем использовать алгоритм

логистической регрессии

.

#Setting up pipeline to flow data though vectorizer to the liner model implementation
pipe = pipeline.Pipeline([('vectorizer', vectorizer), ('clf', linear_model.LogisticRegression())])

Модель готова к перевариванию данных. Теперь просто передаем тренировочные сеты features и labels в наш pipeline и модель начинает обучение. Следующей строкой мы пропускаем тестовый сет features через pipeline, но теперь мы используем predict, чтобы получить число правильно угаданных данных.

#Pass training set of features and labels though pipe.
pipe.fit(X_train, y_train)

#Test model accuracy by running feature test set
y_predicted = pipe.predict(X_test)

Если хочется узнать насколько модель точна в предсказаниях, можно сравнить угаданные данные и тестовый лист labels.

print(metrics.classification_report(y_test, y_predicted,target_names=label_names))

Точность модели определяется величиной от 0 до 1, и можно перевести в проценты. Эта модель дает правильный ответ в 100% случаев. Конечно, используя реальные данные, подобного результата будет добиться не так просто, да и задача достаточно простая.

Последний финальный штрих это сохранить модель в обученном виде, чтоб ее можно было без повторного обучения использовать в любой другой python программе. Мы сериализуем модель в pickle файл с помощью встроенной в Scikit-learn функции:

#Save model into pickle. Built in serializing tool
joblib.dump(pipe, 'injection_model.pkl')

Небольшая демонстрация того, как использовать сериализованную модель в другой программе.

import numpy as np
from sklearn.externals import joblib

#Load classifier from the pickle file
clf = joblib.load('injection_model.pkl')

#Set of test data
input_data = ["aselectndwdpyrey@gmail.com",
           "andrew@microsoft.com'",
           "a.johns@deloite.com",
           "'",
           "select@mail.jp",
           "update11@nebuzar.com",
           "' OR 1=1",
           "asdasd@sick.com'",
           "andrew@mail' OR 1=1",
           "an'drew@bark.1ov111.com",
           "andrew@gmail.com'"]

predicted_attacks = clf.predict(input_data).astype(np.int)
label_names = ["Safe Data", "SQL Injection"]

for email, item in zip(input_data, predicted_attacks):
 print(u'\n{} ----> {}'.format(label_names[item], email))

На выходе мы получим вот такой результат:

Как видите, модель достаточно уверенно определяет SQL инъекции.

Заключение

В итоге мы имеем тренированную модель для определения SQL инъекций, в теории, мы можем воткнуть ее в серверную часть, и в случае определения инъекции перенаправлять все запросы за фальшивую базу данных, чтоб отвадить взгляд от других возможных уязвимостей. Для демонстрации в конце недели я написал небольшой REST API на Flask.

Это были мои первые шаги в области машинного обучения. Надеюсь, что я смогу вдохновить тех, кто так же как и я долгое время с интересом смотрел на машинное обучение, но боялся прикоснутся к нему.

Полный код

from sklearn import ensemble
from sklearn import feature_extraction
from sklearn import linear_model
from sklearn import pipeline
from sklearn import cross_validation
from sklearn import metrics
from sklearn.externals import joblib

import load_data
import pickle

# Load the dataset from the csv file. Handled by load_data.py. Each email is split in characters and each one has label assigned
X, y, label_names = load_data.get_dataset()

# Split the dataset on training and testing sets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,y,test_size=0.2,random_state=0)

#Setting up vectorizer that will convert dataset into vectors using n-gram
vectorizer = feature_extraction.text.TfidfVectorizer(ngram_range=(1, 4), analyzer='char')

#Setting up pipeline to flow data though vectorizer to the liner model implementation
pipe = pipeline.Pipeline([('vectorizer', vectorizer), ('clf', linear_model.LogisticRegression())])

#Pass training set of features and labels though pipe.
pipe.fit(X_train, y_train)

#Test model accuracy by running feature test set
y_predicted = pipe.predict(X_test)

print(metrics.classification_report(y_test, y_predicted,target_names=label_names))

#Save model into pickle. Built in serializing tool
joblib.dump(pipe, 'injection_model.pkl')

Справочные Материалы

Оставляю список полезных ресурсов, которые помогли мне с данным проектом (почти все они на английском)

Tensorflow for begginers Scikit-Learn Tutorials Building Language Detector via Scikit-Learn

Нашел несколько отличных

статей на Medium

включая серию из восьми статей, которые дают хорошее представление, о машинном обучении на простых примерах. (

UPD: русский перевод этих же статей

)



Лучшая Python рассылка



Разместим вашу рекламу

Пиши: mail@pythondigest.ru

Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

Система Orphus