Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Для работы HFT необходимы очень маленькие задержки. Поэтому при внедрении ML модели нужно учитывать ограничения на время расчёта признаков. Есть много докладов и статей на тему ускорения расчётов на pandas. Сюда можно отнести и pandarallel, и dask, и polars. Ребята из Intel даже рассказывали на прошлом PyCon-е про modin. Все эти инструменты работают при больших объемах данных. Но что делать, если количество строк меньше 1000 или даже 100? В данном докладе хочу осветить несколько тем: Почему так важна низкая задержка при hft Какие возможны оптимизации для снижения количества расчетов Numpy Structured arrays как замена Pandas DataFrame Вспоминаем математику и ещё немного сокращаем количество операций.