IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE

     03.12.2022       Выпуск 467 (28.11.2022 - 04.12.2022)       Статьи

Обучение Russian SuperGLUE моделей с помощью библиотеки DeepPavlov

В последние годы соревнования GLUE и SuperGLUE на английском языке стали стандартным бенчмарком для определения возможностей универсальных языковых моделей, таких как BERT, RoBERTa в решении широкого круга задач обработки естественного языка, в том числе задач с недостаточной обучающей выборкой. Соревнования GLUE/SuperGLUE представляют собой наборы задач NLP на основе ранее представленных датасетов. Академическое сообщество NLP довольно быстро расправилось с GLUE, отчасти вследствие того, что задачи были довольно однотипные, они сводились либо к парной текстовой классификации, либо к классификации единственной последовательности. Ответом на это был новый набор задач SuperGLUE, в состав которого вошли вопросно-ответные задачи, задачи кореференции и задачи семантического следования. На данный момент модели, обученные на базе ERNIE и DeBERT, превзошли качество разметки человеком.