Собрали в одном месте самые важные ссылки
читайте авторский блог
Реализацией RPC запросов поверх брокеров сообщений никого не удивишь: очередь для запроса, очередь для ответа — ничего сложного. Тот же RabbitMQ имеет пример в официальной документации. Других примеров там нет, поэтому создается впечатление, что отправка ответных сообщений в другую очередь — единственный возможный способ реализации RPC.
Незаметная жизнь Bluetooth: как ваши устройства могут стать незаметными маячками для трекинга. Как собрать данные окружающих Bluetooth-устройств без кода на коленке прямо на телефоне, как обработать данные, и как это можно использовать не только в коммерческих целях, но и для слежки. Эксперимент и результат.
Очередной выпуск англоязычного подкаста Python Bytes
This post demonstrates replacing the Python code that accepts a WebSocket connection with a C++ equivalent. It shows you how to call C++ code from Python and what kind of speed-up to expect.
Фреймворк для простого создания интерфейсов командной строки.. Скачать можно по ссылке: https://pypi.python.org/pypi/click/
Валидатор JSON данных. Скачать можно по ссылке: https://pypi.python.org/pypi/jsonschema
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
Обычно мы подключаем сбор метрик в prometheus к нашим web‑приложениям с помощью каких‑то клиентских библиотек, которые отдают метрики на /metrics. В этой статье я хочу рассказать как визуализировать Latency с помощью Histogram метрики.Будет полезно тем, кто еще не строил метрики из Prometheus, а так же тем, кто хочет понять как их интерпретировать.
Я смотрю на технологии ИИ с точки зрения человека, кто знает что хочет, но не имеет навыков это сделать через код. Я протестировал новый плагин Code Interpreter на реальных задачах в бизнесе и остался приятно удивлён. Посмотреть кейсы применения
Часто Python-разработчики выбирают Flask в качестве «быстрого старта» для создания веб-приложений. Он прост в использовании и имеет много преимуществ перед другими фреймворками — например, легкий синтаксис, удобные шаблоны и инструменты для гибкой настройки сайтов. Однако у начинающих могут быть трудности в работе с фреймворком. Чтобы свести их к минимуму и помочь с погружением в Flask, наши коллеги собрали полезные материалы. Сохраняйте подборку в закладки и делитесь своими вариантами в комментариях.
Библиотека для Python, которая позволяет вам писать асинхронные сетевые приложение использую синхронный API. Скачать можно по ссылке: https://pypi.python.org/pypi/gevent/
Для Python существует более 137 тысяч библиотек с открытым исходным кодом, автоматизирующих работу в разных областях — от отдельных рутинных рабочих процессов в компаниях до создания сложных многофункциональных приложений. Одна из самых популярных областей применения «змеиного языка» — наука о данных, а также задачи, связанные с искусственным интеллектом и машинным обучением.В этой обширной «шпаргалке» для начинающих AI/ML специалистов мы собрали опенсорсные библиотеки Python, сгруппированные по областям практического применения. Этот список с кратким описанием функций каждого инструмента будет полезен всем, кто постоянно работает с «Питоном» и ищет эффективные инструменты для решения возникающих задач.
Python модуль для создания заглушек (mock-объект) при тестировании. Скачать можно по ссылке: https://pypi.python.org/pypi/mock/