Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Хочу поделиться своими наблюдениями о том, как статистические алгоритмы извлекают грамматику из текстов.
Рассматривается фреймворк marimo, названной в честь аквариумной водоросли, изображенной на заставке к статье. marimo позволяет работать с блокнотами — текстовыми файлами Python, ячейки блокнотов представляют собой декорированные функции Python.
Сегодня хочу поделиться опытом того, как я отказался от стандартной утилиты мониторинга SSSD в пользу прямого общения с демоном через D-Bus и создал полнофункциональный Ansible-модуль.
Наша модель основана на классической архитектуре Bidirectional Encoder Representations from Transformers (BERT), улучшенной под задачи и проблемы, с которыми сталкивается маркетплейс.
А вы задумываетесь иногда, что вот хочется что-то сделать такое, чтобы как-то выбиться из общей массы разработчиков? Сейчас придумаю идею, реализую, стану зарабатывать много денег? Все же так думают? Или только я один.Да вот поэтому я и делаю постоянно какие-то проекты. И да, все они простые и не выдающиеся, но, наверное, главное — не унывать. Утешаю я себя так.
Хочу рассказать о своей новой библиотеке context-async-sqlalchemy, которая помогает очень просто работать с sqlalchemy в async python приложениях. Минимум кода для простых сценариев, но и максимум свободы для сложных.
Сегодня поговорим в коротком формате о защите данных при обучении моделей, а именно в процессе обучения. Никому не понравится, если ваша нейросеть вдруг выдаст чужие паспортные данные или медицинские записи, правда? А ведь модели машинного обучения иногда склонны запоминать кусочки обучающего набора.
Решая соревнования на Kaggle начинаешь замечать паттерн. Baseline сделать просто: загрузить данные, запустить CatBoost или LightGBM, получить baseline метрику. Это занимает полчаса. Но чтобы попасть в топ решений, нужно перепробовать десятки вариантов препроцессинга, сотни комбинаций фичей и тысячи наборов гиперпараметров.
В современной разработке AI-агентов возникает необходимость адаптации больших языковых моделей (LLM) для решения специфических задач, требующих не просто генерации текста, а выполнения последовательных действий с рассуждениями. В этой статье мы рассмотрим и сравним два основных подхода к настройке моделей: Supervised Fine-Tuning (SFT) и Reinforcement Learning (RL), используя библиотеку TRL (Transformer Reinforcement Learning) от Hugging Face.
Дроби, проценты, степени и логарифмы на примерах в математике и в python. Что это такое, все свойства их и как же решать примеры с ними. В этой статье про фундамент, который понадобится в дальнейшем: Самый старт для изучения python, математики в целом и машинного обучения, если математику совсем не знал. Все написано простым языком и не на 100 страниц.
Это личный опыт, оказавшийся для меня неожиданным. Настолько неожиданным, что я решил разобраться, почему результат оказался намного эффективнее, чем я ожидал. Когда я разобрался, мне захотелось поделиться новым пониманием.
На проекте возникла необходимость в функциональности красивой и настраиваемой отчетности, в чем я увидел возможность проверить себя в новой для себя области. Я вызвался разобраться и помочь продукту стать еще лучше.
Фреймворк наконец получил встроенный API для очередей задач — но без воркеров, так что чудес пока ждать рано.
Однажды я пришел на проект, на котором выполнение некоторых тест-сьютов занимало больше часа, настолько медленно, что запускать их на каждый merge request (MR) было просто нереально. Мы хотели запускать автотесты на каждый коммит в MR, но с такой скоростью это было невозможно. В результате мне удалось, за счёт серии небольших, но точных изменений добиться 8,5-кратного ускорения - без переписывания тестов с нуля. В статье расскажу, какие проблемы у нас возникли и как мы их решали.
Очередной выпуск англоязычного подкаста Python Bytes
Недавно мне в очередной раз довелось читать молодым коллегам курс по языку Python. По самому языку мы прошлись и начали говорить о паттернах проектирования и их реализации. В итоге захотелось мне превратить материалы курса в несколько статей. Это первая. Статья получилась большая, сначала я планировал рассказать в одном тексте обо всех порождающих паттернах, но, поглядев на размер, передумал и разбил историю на части.
На написание статьи меня сподвигла статья «Pydantic V2: Почему dataclasses вам больше не нужны» и меткий комментарий:«Спасибо за статью, но мне кажется Вы учите детей плохому. »Давайте попробуем разобраться, почему и датаклассы хороши, и pydantic V2 прекрасен, а вместе – они становятся ещё лучше. Или устроить смешанное единоборство?
Это история о том, как написать компилятор Python, генерирующий оптимизированные ядра и при этом позволяющий сохранить простоту кода.
Заключительная (но ещё не последняя) статья из цикла про диффузные модели, где мы наконец отбросим примитивную модель из полносвязных слоёв и напишем работающий генератор изображений c архитектурой Diffusion Transformer (DiT). Разберёмся зачем нарезать изображения на квадратики и увидим, что произойдёт с вашей генерацией, если проигнорировать главную "слабость" трансформеров - неспособность понимать порядок.