Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Перед разработчиками встает задача определения производительности железа в задаче исполнения глубоких моделей. Например, хочется решить проблему анализа пола-возраста покупателей, которые заходят в магазин, чтобы в зависимости от этого менять оформление магазина или наполнение товаром. Вы уже знаете какие модели хотите использовать в вашем ПО, но до конца не понятно как выбрать железо. Можно выбрать самый топ и переплачивать как за простаивающие мощности, так и за электроэнергию. Можно взять самый дешевый i3 и потом вдруг окажется, что он может вывезти каскад из нескольких глубоких моделей на 8 камерах. А может быть камера всего одна, и для решения задачи достаточно Raspberry Pi с Movidius Neural Compute Stick? Поэтому хочется иметь инструмент для оценки скорости работы вашего инференса на разном железе, причем еще до начала обучения.
Недавно я начал оттачивать владение языком программирования Python. Я хотел изучить продвинутые паттерны, идиомы и методы программирования. Начал я с чтения книг по продвинутому Python, но информация, похоже, не откладывалась в голове без применения навыков. Хотелось иметь возможность задавать вопросы эксперту, пока учусь, а такую возможность трудно найти! Тогда ко мне и пришла идея: что, если я найду проект с открытым и достаточно продвинутым кодом и напишу документацию и тесты? Я сделал ставку, что это заставит меня изучать все очень глубоко, а поддерживающие проект люди оценит мою работу и будут готовы ответить на мои вопросы.
История голодного студента с пытливым умом Не знаю, как вы, а я обожаю пиццу. Особенно если это особые чесночные пицца-палочки Papa John’s. Поэтому я был в восторге, когда после заказа еды навынос получил от них следующее письмо: Papa John’s (с) Заголовок письма с опросом Бесплатная еда! Мне определённо нужно было пройти этот опрос
В сегодняшнем материале рассказывается про Neuropod, движок вывода глубокого обучения с открытым исходным кодом от Uber ATG. Это слой абстракции над фреймворками глубокого обучения, решающий проблему быстрой замены написанных на разных фреймворках моделей и проблему адаптации модели для производственных сред, помогающий построить единый и оптимизированный конвейер входных данных. Подробности, как обычно, под катом.
В Python есть множество возможностей и языковых конструкций. Какие-то мы используем каждый день, а о некоторых даже опытные программисты узнают с удивлением после нескольких лет работы с языком (привет, Ellipsis!). Совсем недавно вышел Python 3.9, но в этой статье я расскажу о функциональности, представленной еще в версии 3.7. На мой взгляд, она совершенно незаслуженно обделена пристальным вниманием. Речь, конечно же, о contextvars.
Как я учил агента собирать клетку 2048 в игре “2048”
Интересно, как ведут себя потоки, когда борются за GIL, или немного информации отсюда только для Python3.
Сразу оговорюсь, что использую Ubuntu 16.04 c ядром 4.15.0-115-generic, на машине стоит 4-х ядерный процессор Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz с 4 GB RAM.
Данная статья является продолжением вот этой статьи. В ней мы рассмотрели создание и настройку yandex cloud functions телеграм бота. А сегодня мы рассмотрим подключение телеграм бота к базе данных и сохранение какой-либо информации о пользователе, с которым общается бот.
В качестве базы данных мы будем использовать Yandex Cloud Database.
В посте есть результаты экспериментов с различными биологическими и физическими закономерностями, в частности песочный сплайн, дифференциальная решетка, песчаные творения и песочные знаки.
Недавно я написал ответ о жизни проекта в Докерах и отладке кода вне него, где мельком упомянул о том, что можно сделать свою систему конфигурирования, чтобы сервис и в Кубере хорошо работал, подтягивал секреты, и локально удобно запускался, в том числе вообще вне Докера. Ничего сложного, но описанный "рецепт" может кому-то пригодится :) Код на Питоне, но логика к языку не привязана.
Python-разработчиков можно поделить на три группы. В самой большой — специалисты, чьи зарплатные ожидания ниже предложений компаний. Во второй — те, кто хочет получать больше, чем им готовы предложить. И совсем мало разработчиков, чьи ожидания совпадают с предложениями. Деление не зависит от уровня разработчика, скорее от города потому что в каждой из 3 групп есть джуны, мидлы и сеньоры.