Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Особенности и лайфхаки настройки JupyterHub для большой Data Science-команды. Как правильно организовать работу на общих серверах. Даже если команда состоит из одного человека, вы вынесете новые хитрости. Но что, если вы не один? Как ужиться на одной машине 20 студентам, изучающим ML, или R&D-;команде из 15? Готовые рецепты, рекомендации и собранные грабли.
Дошли руки до Cythona, спасибо самоизоляции. Проблема прозаична — как ускориться на python с минимальными потерями в синтаксисе. Один из подходов — использование Сython (сместь С и python). Не давала покоя публикация с громким названием отсюда — habr.com/ru/company/ruvds/blog/462487 Но из содержания публикации мало что можно вынести, так как формулы и результирующая таблица неверны. Попробуем дополнить картину, начатую авторами поста и расставим точки над и.
В данной статье ломаем шифры перестановки и Виженера, расшифруем сохраненный в браузере Mozilla Firefox пароль, расправляемся с блокировкой Android и разбираемся с атакой Bit-Flipping.
Краткий обзор тайп-чекинга в питоне, mypy, pep484. Как я писал библиотеку django-stubs. С какими проблемами столкнулся в процессе. Что еще планируется сделать. DEP (Django Enhancement Proposal) по поводу добавления типов в core.
С тех пор, как первая модель завершения кода IntelliCode была представлена в Visual Studio и Visual Studio Code в 2018 году, она стала важным помощником по кодингу для миллионов разработчиков по всему миру. В последние два года мы постоянно работали над тем, чтобы адаптировать IntelliCode для большего количества языков программирования, а в то же время изучали способы повышения точности и покрытия модели, чтобы обеспечить еще большее удовлетворение пользователей. Одним из наших основных исследовательских усилий было привнести последние достижения в области глубокого обучения для моделирования естественного языка в моделирование языков программирования. После использования таких технологий, как машинное обучение Azure и среда выполнения ONNX, мы успешно реализовали первую модель глубокого обучения для всех пользователей IntelliCode Python в Visual Studio Code.
Данная статья посвящена разбору плюсов и минусов очередного Python фреймворка, который увидел свет около недели назад.
Представляю вашему вниманию перевод статьи "Pythonで0からディシジョンツリーを作って理解する (1. 概要編)".
Любой разработчик использует те или иные вспомогательные инструменты. Какие-то из них позволяют ускорить процесс, какие-то — избавиться от ошибок, сделать код более понятным. Такие инструменты есть практически в любой сфере разработки. Престон Бадир (Preston Badeer), Python-программист, поделился набором расширений которые, по его мнению, значительно упрощают и ускоряют кодинг. За 5 лет работы он перепробовал множество инструментов и выделил три наиболее полезных.
Перед вами доклад Марии Зеленовой zelma — разработчика в Едадиле. За час Маша рассказала, в чём состоит тестирование программ, какие тесты бывают, зачем их писать. На простых примерах можно узнать про библиотеки для тестирования Python-кода (unittest, pytest, mock), принципы их работы и отличия между ними. — Добрый вечер, меня зовут Маша, я работаю в отделе подготовки анализа данных Едадила, и сегодня у нас с вами лекция про тестирование.
Однажды мне попалось описание приложения для Android, которое определяло пульс по камере телефона, просто по общей картинке. Камера не прикладывалась к пальцу, не просвечивалась светодиодом и пр. Интересный момент был в том, что ревьюеры не поверили в возможность такого определения пульса, и приложение было отклонено. Чем дело кончилось у автора программы, не знаю, но стало интересно проверить, возможно ли это.
Говоря о Python, обычно используется процедурный и ООП стиль программирования, однако это не значит, что другие стили невозможны. В презентации ниже мы рассмотрим ещё пару вариантов — Функциональное программирование и программирование с помощью генераторов. Последние, в том числе, привели к появлению сопрограмм, которые позднее помогли создать асинхронность в Python. Сопрограммы и асинхронность выходят за рамки текущего доклада, поэтому, если интересно, можете ознакомиться об этом самостоятельно. Лично я рекомендую книгу "Fluent Python", в которой разговор начинается от итераторов, плавно переходит в темы о генераторах, сопрограммах и асинхронности.
В этой статье мы попробуем написать классификатор определяющий саркастические статьи используя машинное обучение и TensorFlow
Статья является переводом с Machine Learning Foundations: Part 10 — Using NLP to build a sarcasm classifier
В IT-кругах ходит такая шутка, что машинное обучение (machine learning, ML) — это как секс в среде подростков: все об этом говорят, все делают вид, что этим занимаются, но, на самом деле, мало у кого это получается. У FunCorp получилось внедрить ML в главную механику своего продукта и добиться радикального (почти на 40%!) улучшения ключевых метрик. Интересно? Добро пожаловать под кат.