Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Сегодня я решил создать чисто практическую статью, в которой мы с нуля и максимально быстро разработаем полноценный веб-сервис с фронтендом и бэкендом. После этого мы выполним деплой этого приложения, чтобы любой пользователь мог им воспользоваться.
Учебный процесс меня вдохновлял, и казалось, что впереди меня ожидает очередь из работодателей, стремящихся нанять востребованного специалиста. Но, как оказалось, никто не спешит брать на работу junior-специалистов
Я объединил все эти фичи в реальный проект с открытым исходным кодом, чтобы у вас сложилась целостная картина. Мы с вами создадим UX/UI на Figma, напишем фронтенд на HTML, CSS, SASS, Bootstrap и JavaScript, создадим ER-диаграмму в MySQL Workbench, напишем бекэнд на Flask, создадим регистрацию через социальные сети OAuth 2.0 в один клик, используем брокер сообщений и асинхронную очередь Celery для отправки писем на электронную почту, сделаем WYSIWYG-редактор, реализуем полнотекстовый поиск Elasticsearch, закешируем Redis, покроем тестами pytest и запустим в Docker-контейнерах, поговорим о многопроцессности для WSGI-шлюза Gunicorn.
A color field for Django models with a nice color-picker in the admin.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
Сразу оговорюсь, что в статье речь пойдёт преимущественно о теоретической стороне проектирования батарей, нежели о практических рекомендациях по исправлению их технических проблем — жаль разочаровывать тех, кого больше интересует последнее.
Эта статья рассчитана на людей, которые уже знакомы с Python, хотя бы на уровне junior+. Я объясню, какие есть отличия и особенности в многопоточности, асинхронности и мультипроцессорности в Python, где и когда они используются. Как говорится в пословице: «Всё познаётся в сравнении», именно в таком стиле я подготовил примеры. Кроме этого, буду специально делать ошибки и рассматривать неправильные подходы, чтобы можно было сразу разобраться, убедиться и запомнить, почему так делать нельзя и какой другой подход в этом случае нужно использовать.
В двух предыдущих статьях здесь и тут мы рассказывали историю создания одного из компонентов платформы экспериментов в компании. В тех статьях говорилось о множестве изменений и улучшений, которые претерпел Python-код, чтобы работать достаточно быстро. Но как бы качественно не был написан код, все усилия могут сойти на нет, если он будет запущен в неправильной среде. В этой статье продолжим рассказ об оптимизациях и улучшениях, но в этот раз речь будет идти не столько об особенностях предметной области и решаемой бизнес-задачи, сколько о том, как мы архитектурно организовали работу сервиса для получения минимального времени ответа.
А теперь о том, что происходило в последнее время на других ресурсах.
Хочу поделиться примером‑инструкцией как получить инсайты из геоданных без регистрации, смс (только open‑source и бесплатные инструменты: OSM, python, Портал открытых данных Правительства Москвы, DataLens). Как сделать так, чтобы дашборд не "умер" от количества точек и тяжелых полигонов, работал сравнительно быстро и давал пользователю представление общей картины.
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
Модуль проверки форматирования кода. Скачать можно по ссылке: https://pypi.python.org/pypi/flake8/
Опыт обучения и применения нейросетей в качестве модуля российской DCAP системы. Для анализа неструктурированных данных необходимо применять нейросети. Я хочу рассказать о проблемах, с которыми мы столкнулись при создании нейросетей, от этапа сбора и разметки данных и до создания нескольких микросервисов. Слайды: https://moscowpython.ru/meetup/91/neuro-for-dcap/
В этом докладе будет рассказ о том, как ленивые разработчики не захотели писать и поддерживать один и тот же фукнционал на языках Golang и Python, и решили вызывать гошный код из питона. Какой подход обмена структурами можно использовать, если методы принимают и возвращают "сложные структуры"? Сильно ли отличается скорость выполнения нативной реализации на питоне от примененного подхода? Слайды: https://moscowpython.ru/meetup/91/go-in-python/
Pythonoкартография, или как заставить беспилотный автомобиль соблюдать ПДД Рассмотрю кейсы использования Python для создания высокоточных карт (HDMap) в беспилотной технологии и как мы автоматизируем большое количество задач по оцифровке локаций SberAuotTech. Слайды: https://moscowpython.ru/meetup/91/python-mapping/