Собрали в одном месте самые важные ссылки
читайте авторский блог
Понадобилось на одном из своих проектов установить FTS сервис. Я достаточно долгое время пользовался SphinxSearch, но решил поинтересоваться у общественности (тут итут) какой сейчас инструмент более популярен и отвечает следующим требованиям:
В ходе этого выступления мы создадим веб-приложение на Django, при помощи которого продемонстрируем всем желающим, как может быть реализован согласованный с принципами REST программный интерфейс к нему, а также узнаем для чего нужны подобные интерфейсы. Помимо принципов REST, будет затронута тема ограничения доступа к веб-ресурсам при помощи OAuth2 (с примерами использования приложения django-oauthost).
Мы рассмотрим популярные библиотеки для функционального программирования на Python — fn.py, functools, itertools, funcy, hask. Узнаем о возможностях каждой из них, а также о том, как в динамическом языке имитировать мощную систему типов. Затронем характеристики функционального программирования.
Unishark поможет вам:
- писать конфигурацию для тестов в yaml или json стиле - запускать тесты параллельно на разных уровнях
- генерировать отчеты в форматах HTML или XUnit - ускорить написание тестов с помощью новых декораторов
Продолжение перевода неофициальной документации Selenium для Python.
Оригинал можно найти здесь.
Вдохновение — задача с собеседования Яндекса и статья «Парсинг формул в 40 строк». Моей целью было посмотреть, как будет выглядеть «pythonic» решение этой задачи. Хотелось, чтобы решение было простым, код читаемым и разделённым. В итоге ещё получился и пример применения цепочки генераторов (generators pipeline).
СУБД Neo4j — это NoSQL база данных, ориентированная на хранение графов. Изюминкой продукта является декларативный язык запросов Cypher.
Cypher позаимствовал ключевые слова типа WHERE, ORDER BY из SQL; синтаксис из таких разных языков как Python, Haskell, SPARQL; и в результате появился язык, позволяющий делать запросы к графам в визуальной форме наподобие ASCII art. Например, заголовок данной статьи я бы представил в виде графа (Neo4j) — [изучаем] -> (Wordnet). И это почти готовый запрос к базе данных!
Еще один модуль для реализации нейронных сетей. В данном случае оптимизации сделаны на обработку рукописных чисел.
Статья рассказывает об оптимизации Python кода на примере задач-число дробилок. Применяются Numpy, Numbu, Cython
Формулировка задачи: визуализировать все связи между двумя пользователями внутри одной социальной сети. При этом связи не должны дублироваться, например если Ваня знает Петю через Олю, то Оля в дальнейших итерациях по поиску общих друзей не участвует. Чтобы попрактиковаться в API, я выбрал “Вконтакте”.
Простая библиотека для создания HTTP запросов. Изменения описаны по ссылке https://allmychanges.com/p/python/requests/#2.9.0. Скачать можно по ссылке: http://pypi.python.org/pypi/requests/
Порой возникают задачи, когда возникает необходимость формировать отчеты и прочие документы. В моей практике данная задача возникала не раз.
Проекты, в которых возникала данная задача: