Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Спецвыпуск с Positive Hack Days! Гости у Moscow Python Podcast на сей раз тоже необычные — всамделишные, но сугубо «белые» хакеры: Ярослав и Анатолий из Positive Technologies. Вместе с ними мы вникаем в особенности работы white hat хакеров, в логику действий взломщиков, находящихся на светлой стороне силы, в специфику хака веб-приложений, а также в отдельные потенциальные уязвимости в технологическом стеке вокруг Python.
Иногда возникает необходимость разделить несколько пакетов, лежащих в одном пространстве имен по разным физическим путям. Например, если вы хотите иметь возможность передавать разную компоновку плагинов, имея возможность в последствии добавлять их, не контролируя их расположение, и, при этом, обращаться к ним через один namespace.
Эта шпаргалка, которая подойдет скорее для новичков, посвящена пространствам имен Python.
Давайте рассмотрим, как это можно сделать в разных версиях Python, так как хотя Python2 и перестает скоро поддерживаться, многие из нас как раз сейчас меж двух огней, и это как раз один из важных нюансов при переходе.
Одним из первых радиотелескоп построил американец Грот Рёбер в 1937 году. Радиотелескоп представлял собой жестяное зеркало диаметром 9.5 м, установленное на деревянной раме
«Большая О» в информатике используется при анализе того, как ведёт себя код с увеличением объёма данных. И это полезный инструмент, который зачастую преподносится при помощи отталкивающих математических концепций.
В этом выступлении я расскажу вам о большой О то, что действительно важно знать разработчику: как использовать этот инструмент во благо программ. Большая О поможет вам подобрать нужные структуры данных и алгоритмы, таким образом, чтобы производительность не терялась даже на больших объёмах данных.
Не нужно быть математиком или зубрить информатику, чтобы освоить большую О — она не так загадочна, как может показаться.
На картинке вы видите обычную таблицу умножения, которая, думаю, всем хорошо знакома.
Ничего особенного в ней нет, кроме того, что весь алгоритм ее построения сжат до одной стандартной Python’овской строки в 79 символов (см. PEP8). Кому интересно добро пожаловать под кат.
В прошлой главе мы видели, как нейросети могут самостоятельно обучаться весам и смещениям с использованием алгоритма градиентного спуска. Однако в нашем объяснении имелся пробел: мы не обсуждали подсчёт градиента функции стоимости. А это приличный пробел! В этой главе я расскажу быстрый алгоритм для вычисления подобных градиентов, известный, как обратное распространение.
Мы рады сообщить, что расширение Python для Visual Studio Code от июня 2019 года уже доступно. Вы можете загрузить расширение Python из Marketplaceили установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, просто перезапустив Visual Studio Code. Узнать больше о поддержке Python в Visual Studio Code можно в документации.
В этом выпуске мы внесли улучшения, которые перечислены в нашем журнале изменений, решив в общей сложности 70 проблем, включая связанные со средством просмотра графиков с окном Python Interactive и параллельными тестами с pytest. Обо всех изменениях читайте под катом.
Этот высокоуровневый урок рассчитан на новичков в машинном обучении и искусственном интеллекте. Для того, чтобы успешно создать нейронную сеть, необходимо:
Представляю вашему вниманию перевод статьи Toward a “Kernel Python” автора Glyph Lefkowitz (создателя фреймворка Twisted).
Я использовал Python чаще, чем любой другой язык программирования в последние 4-5 лет. Python – преобладающий язык для билдов под Firefox, тестирования и инструмента CI. Mercurial также в основном написан на Python. Множество своих сторонних проектов я тоже писал на нем.
Во время своей работы я получил немного знаний о производительности Python и о его средствах оптимизации. В этой статье мне хотелось бы поделиться этими знаниями.
Некоторые вопросы в мире питонячей разработки имеют магическую силу поднимать целые армии людей, направлять их на священную войну и заставлять кидать друг в друга целыми кучами аргументов, выкладок и кусков кода. Иногда, когда доводы заканчиваются, враждующие армии быстро переходят к ведению боевых действий с помощью перекидывание кучек вербальных экскрементов.
Про тонкости, расширенные возможности, про цепочки подписей x.509, как можно организовать свои цепочки подписей. Ну и в общем, как устроить защищённое общение между своими/сторонними сервисами по стандартам RFC. Ну и конечно, как это все использовать на Python
Сталкивались ли вы с проблемой: как быть с разделяемыми данными для приложения с микросервисной архитектурой? Как держать их в консистентом состоянии? Как сделать так, чтобы API для работы с этими данными не тормозили? Расскажу, какой подход мы выбрали в рамках нашего продукта и почему
Казалось бы, что можно написать про обычный целочисленный тип? Однако тут не всё так просто и целочисленный тип не такой уж и очевидный.
Если вам интересно, почему x * 2 быстрее x << 1.
Как всегда, зависая вконтакте, я решил скачать пару новых аудиозаписей на комп. Но меня ждало разочарование: аудиозаписи возвращались в каком-то странном формате: m3u8. Этот формат даже vlc media pleyer не воспроизводил, и я стал думать, что делать…
Что вам от ещё одного выступления про ГБИ (это глобальная блокировка интерпретатора, из-за которой код на Питоне не может быть распараллелен по ядрам)?
Конечно мы посвятим часть времени описанию того, что это такое, того на что она влияет и на что не влияет, и того как её можно обойти. Но главное — мы поговорим о возможном будущем. И вероятно даже о будущем после ГБИ. Будущем, к которому ведут нас изыскания, производимые нами в настоящем. Будущем Питона, исполняемого на многих ядрах.
Эта статья о том, как мы с помощью машинного обучения автоматизировали рутинный процесс назначения задач на тестировщиков.
В hh.ru есть внутренняя служба, на которую в Jira создаются задачи (внутри компании их называют HHS), если у кого-то что-то не работает или работает неправильно. Дальше эти задачи вручную обрабатывает руководитель группы QA Алексей и назначает на команду, в чью зону ответственности входит неисправность. Лёша знает, что скучные задачи должны выполнять роботы. Поэтому он обратился ко мне за помощью по части ML.
Рано или поздно почти любая компания сталкивается с проблемой развития веб-аналитики. Это не значит, что нужно только поставить код Google Analytics на сайт — нужно найти пользу в полученных данных. В этом посте я расскажу, как это сделать максимально эффективно, затратив незначительные (по меркам профильных сервисов) деньги.
В первой статье о структуре QVD-файла я описал общую структуру и достаточно подробно остановился на метаданных, во второй — на хранении колонок (символов). В этой статье я опишу формат хранения информации о строках, подытожу, расскажу о планах и достижениях.