Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Поиск оптимального пути в графе. Такая задача встречается довольно часто и в повседневной жизни, и в мире технологий. Справиться с такими вызовами помогает подход, который должен быть в арсенале каждого программиста — алгоритм Дейкстры.
Если вы хотите найти ответить на вопросы, чем этот алгоритм лучше BFS (поиска в ширину), при каких условиях алгоритм применим, и какие теоретические и практические задачи можно с его помощью решать, читайте далее.
Если вы писали код на Python, то весьма высока вероятность того, что вы, хотя бы в одной из своих программ, пользовались числами. Например, это могли быть целые числа для указания индекса значения в списке, или числа с плавающей точкой, представляющие суммы в некоей валюте.
Недавно я играл в головоломку Wordle, параллельно думая, как бы её могла решать программа.
[Прим. пер.: Wordle — игра в отгадывание слов, напоминающая «быки и коровы». Правила достаточно ясны по скриншоту выше.]
Зачастую приходится работать с большими объемами документов, к примеру, исполнительными листами, заявлениями, договорами, из текстов которых нам необходимо извлечь весьма конкретную информацию: ФИО, даты рождения, наименования должности, паспортные данные, адрес, ИНН и наименование компаний, даты подписания документов и так далее. Всё это относится к задаче распознавания именованных сущностей (NER). Какие инструменты могут помочь нам в решении данной задачи для русского языка?
При обработке данных исходного DataSet часто попадаются аномальные значения, которые поставлены вместо пропусков, и мало того, что они скрываются, так ещё и несут вред общему делу. В данной статье будет разобран практический пример избавления от аномальных значений в связанных с географией данных при помощи инструментов известной библиотеки Pandas.
Итак, сегодня мы поговорим о генерации пещер и карт высот с помощью шума. Это будет Гауссовский шум, его легче всего сделать в Python Pillow.
Мы избалованы выбором в работе с данными. Инструмент номер один — Pandas, затем идут Dask, Vaex, Datatable, cuDF и так далее. К этому списку добавим Terality, как будто всего этого недостаточно.
Возникает вопрос: Terality компенсирует скорость Pandas ценой её простоты и гибкости? Нет. Terality — это злой кузен Pandas, рождённый с суперсилой. У него похожий синтаксис, но работает он молниеносно и не зависит от мощности вашей машины. Звучит слишком хорошо, чтобы быть правдой? Тогда читайте. Эта статья не оплачена и отражает мой собственный взгляд.
Простые числа, согласно известному определению – такие числа, которые делятся только на 1 и само себя. Иначе, число считается составным, и его можно разложить на произведение простых чисел. Единица формально соответствует определению простого числа, но это число принято не относить ни к простым, ни к составным.Как искать простые числа? Можно действовать напрямую, применяя определение: просто делить каждое данное число N подряд на все числа m<N.Такая стратегия тоже имеет смысл, и ее можно обсуждать, и даже думать о том, как ее совершенствовать, но сегодня у нас будет другая история.
Хочу рассмотреть кейс, когда разработчик приходит на проект, а там: автоматизации тестов — нет и команда не хочет ее внедрять; cd/ci — нет и не предвидится. Хочу обсудить: типовые причины, которые приводят к такой ситуации; проблемы, которые будут у разработчиков. Слайды: https://moscowpython.ru/meetup/76/fight-for-autotests/
PostgreSQL — наиболее популярная база данных, которая используется в Python разработке сейчас. Не все разработчики знают, с какими нюансами можно столкнуться при ее использовании. В докладе будет много полезной информации по тому как правильно настроить PostgreSQL под ваш проект чтобы повысить ее эффективность и надежность. Слайды: https://moscowpython.ru/meetup/76/postresql-basics/
Устав искать нормальный портативный инструмент для переключения между моим рабочим прокси-сервером и прямым подключением дома (который, к тому же, работал бы на Windows и Linux), я решил-таки запилить собственную тулзу для этих целей. Вооружившись Python и Qt, начал клепать код в VSCode... Что из этого вышло -- читаем под катом.
Здесь лежит окончание "расследования" Новогодний детектив: странный хайзенбаг в «питоньих» часах.
Изначально хотел просто обновить статью и написать соответствующий комментарий, но понял что апдейт выходит чуть не длиннее самой статьи.
В конце прошлого года поступил запрос на рассмотрение интересного кейса: спрогнозировать объем продаж продукта на рынке при динамическом ценообразовании.
Сначала разберемся немножко с теорией: что за такие модули для Ansible и что в Ansible есть ещё расширяемого, кроме модулей, чтобы не путаться в том, что мы можем написать для Ansible.
Генерация 3D-моделей из текстового описания и видеозаписей, сделанных на обыкновенный смартфон, конкурент DALL-E, ускоренная GAN-инверсия и многое другое в подборке материалов за декабрь, а также небольшие новости о будущем дайджеста.
Современный человек много чем занимается в интернете: ходит по магазинам, слушает музыку, читает новости. Все эти задачи подразумевают поиск и выбор того, что ему нужно. При этом важную роль тут играют рекомендательные системы. Они помогают людям не утонуть в многообразии вариантов и увидеть именно то, что им подойдёт, то, что иначе им сложно было бы найти.
Когда речь заходит о тяжелой промышленности и технологиях в ней, в большинстве случаев мы ожидаем услышать Java, а может быть и Java EE, или наоборот что-то очень низкоуровневое. Именно такие предположения я чаще всего слышу от друзей, когда рассказываю, где работаю.
Сразу скажу, что я не разработчик. Лишь системный-аналитик в абстрактной международной компании. Так что, прошу за код не бить палками.
Цель статьи: если кто-то будет гуглить про встраивание MergeField в docx с помощью Python, то это заняло чуть меньше времени чем у меня.
Эта вторая статья из цикла, в котором рассказывается о лучших практиках современного Python. В этом цикле статей все примеры основаны на реализации простого проекта, который представляет собой функцию Python, которая суммирует данные, присутствующие в pandas DataFrame. Функция выводит количество строк и столбцов и частоту каждого типа данных, присутствующих в pandas DataFrame.
Это не прямое сравнение, а скорее опыт дилетанта на примере двух одноплатных компьютеров. Вообще мой дилетантский стаж большой как по отношению к компьютерам, так и к электронике.
Что касается электроники, то тянется он с времен СССР, когда я еще школьником, посещал радиотехнический кружок. Потом уже позже добавились компьютеры. Так на лабораторных довелось опробовать аналоговую вычислительную машину. Как она сохранилась непонятно, в то время уже продавались электронные калькуляторы.