Собрали в одном месте самые важные ссылки
читайте авторский блог
Сложно найти на Хабре человека, который не слышал бы про нейронные сети. Регулярные новости о свежих достижениях нейронных сетей заставляют удивляться широкую публику, а также привлекают новых энтузиастов и исследователей. Привлеченный поток специалистов способствует не только еще большим успехам нейронных моделей, но и приводит к развитию инструментов для более удобного использования Deep Learning подходов. Помимо всем известных фреймворков Tensorflow и PyTorch активно развиваются и другие библиотеки, нередко более гибкие, но менее известные. Эта статья является переводом одного из постов neptune.ai и освещает самые интересные инструменты для глубокого обучения, представленные на конференции по машинному обучения ICLR 2020.
Представьте лог на 2,5 гигабайта после неудачной сборки. Это три миллиона строк. Вы ищете баг или регрессию, которая обнаруживается на миллионной строке. Вероятно, найти одну такую строку вручную просто невозможно. Один из вариантов — diff между последней успешной и упавшей сборкой в надежде на то, что баг пишет в журналы необычные строки. Решение Netflix быстрее и точнее LogReduce — под катом.
Продолжаю публикацию решений, отправленных на дорешивание машин с площадки HackTheBox.
В данной статье очень много всего. Посмотрим как для удобства совместить Burp Suite и sqlmap, узнаем как получить пользователей домена имея доступ к MSSQL, эксплуатируем уязвимость в Visual Studio Code, блокируем AMSI, выполняем AS-REP Roasting для получения учетных данных и повышаем привилегии из группы Server Operators. А в качестве демонстрации новой уязвимости ZeroLogon, захватим эту же машину другим путем меньше чем за 5 минут.
Не так давно мне пришлось работать над бэкендом высоко нагруженного проекта, в котором нужно было организовать регулярное выполнение большого количества фоновых задач со сложными вычислениями и запросами на сторонние сервисы. Проект асинхронный и до того, как я пришёл, в нём был простой механизм крон-запуска задач: цикл с проверкой текущего времени и запуск групп корутин через gather — такой подход оказался приемлем до момента, пока таких корутин были десятки и сотни, однако, когда их количество перевалило через две тысячи, пришлось думать об организации нормальной очереди задач с брокером, несколькими воркерами и прочим.
В этой статье я расскажу про опыт проведения городской школьной олимпиады по программированию.
Совсем недавно у нас вышла подробная книга о работе с хранилищем данных Google BigQuery. Сегодня мы решили вновь кратко затронуть эту тему и опубликовать небольшой кейс о выполнении запросов к данным BigQuery на Python и R.
Сообщите в комментариях, интересует ли публикация на тему машинного обучения с применением BigQuery
Меня зовут Борис и в этом труде я поделюсь с тобой опытом проектирования и реализации сервиса массовых рассылок, как части объемлющей системы оповещения студентов преподавателями (далее также — Ада), которую тоже я осуществляю.
Сегодня я расскажу вам о моем опыте с ВК, найденных багах, об отношении к пользователям и, собственно, как получить аудиозаписи вк, пользуясь "не багами а фичами", как меня заверяли сотрудники данной корпорации. Итак, приступим!
OpenCV — это open source библиотека компьютерного зрения, которая предназначена для анализа, классификации и обработки изображений. Широко используется в таких языках как C, C++, Python и Java.
Руководство, описанное в этой статье, поможет вам в тестировании веб-интерфейсов. Мы создадим простое надежное решение для тестирования веб-интерфейса с помощью Python, pytest и Selenium WebDriver. Мы рассмотрим стратегии построения хороших тестов и паттерны написания правильных автоматизированных тестов. Конечно же, разработанный проект по тестированию сможет послужить хорошей основой для создания собственных тест-кейсов.
Представляем настраиваемую и интерактивную структуру дерева решений, написанную на Python. Эта реализация подходит для извлечение знаний из данных, проверки интуитивного представления, улучшения понимание внутренней работы деревьев решений, а также изучение альтернативных причинно-следственных связей в отношении вашей проблемы обучения. Она может использоваться в качестве части более сложных алгоритмов, визуализации и отчётов, для любых исследовательских целей, а также как доступная платформа, чтобы легко проверить ваши идеи алгоритмов дерева решений.
Предлагается взглянуть на dataset постов с pikabu.ru c точки зрения датастатистики. Сам датасет в составе 450к штук собран лучшими круглосуточными парсерами, обработан отдушками, убирающими дубликаты статей, а также нашпигован дополнительными столбцами, смысл наличия которых доступен только посвященным. Здесь не столько интересен сам датасет, сколько подход к анализу подобных сайтов. В последующих постах попробуем применить элементы из maсhine learning для анализа.
Сегодня я хочу продолжить тему «веселых картинок» в мире RabbitMQ. В своей статье Алексей Казаков рассматривал такой мощный инструмент, как отложенные очереди, и разные реализации стратегии Retry. А сегодня мы поговорим, как использовать RabbitMQ для планирования периодических задач.
Зачем нам понадобилось создавать свой велосипед и почему мы отказались от Сelery и других инструментов менеджмента задач? Дело в том, что они не подошли под наши задачи и требования к отказоустойчивости, которые у нас в компании достаточно жесткие.
После моей недавней статьи (части 1, 2, 3) о криминале и полицейской стрельбе в США и их связи с расовой принадлежностью я решил продолжить эту тему и в таком же ключе проанализировать другие открытые данные — благо, таких еще достаточно благодаря программе криминальной отчетности ФБР.
Сегодня будем исследовать данные по преступлениям, совершенным на почве нетерпимости. Сначала посмотрим на всю статистику целиком, а затем подробно рассмотрим именно расовую нетерпимость и конкретно преступления, совершаемые белыми и черными на почве вражды к белым и черным.
Продолжаем тему музыкального программирования — ранее мы говорили о языках Csound, SuperCollider и Pure Data, а сегодня рассказываем Python и библиотеках FoxDot, Pippi и Music-Code.
Данная статья — вторая в серии. Первую вы можете найти здесь.
Одна из наших задач — создавать и улучшать алгоритмы ранжирования для ленты новостей. В этой статье расскажу о том, как можно применять для этого причинно-следственный анализ — чтобы в результате сделать сервис интереснее для пользователей. Поговорим про преимущества такого подхода по сравнению с корреляционным анализом, и я предложу модификации существующих алгоритмов.
Перевод: Python’s @classmethod and @staticmethod Explained
Для новичков, изучающих объектно-ориентированное программирование на Python, очень важно хорошо разбираться в таких понятиях как classmethod и staticmethod для написания более оптимизированного и повторно используемого кода.
Кроме того, даже опытные программисты, работающие на разных языках, часто путают эти два понятия.
Ни для кого не секрет, что Python прочно занял первенство в ML и Data Science. А что если посмотреть на другие языки и платформы? Насколько в них удобно делать аналогичные решения?