Собрали в одном месте самые важные ссылки
читайте авторский блог
Итак, вашему вниманию представляется перевод страницы Time series forecasting из раздела руководств tensorflow: ссылка. Мои дополнения вместе с иллюстрациями к переводу нацелены помочь с пониманием основных идей в одном из самых интересных направлений ML и эконометрики в целом – прогнозировании временных рядов.
Подготовил для вас подборку самых интересных находок из опенсорса за март 2020.
Учимся находить лучшее для своего разбойника при помощи программирования. Также разбираемся, не водит ли нас программа «за нос».
Как бы сильно не развивались технологии, за развитием всегда тянется вереница устаревших подходов. Это может быть обусловлено плавным переходом, человеческим фактором, технологическими необходимостями или чем-то другим. В области обработки данных наиболее показательными в этой части являются источники данных. Как бы мы не мечтали от этого избавиться, но пока часть данных пересылается в мессенджерах и электронных письмах, не говоря и про более архаичные форматы. Приглашаю под кат разобрать один из вариантов для Apache Airflow, иллюстрирующий, как можно забирать данные из электронных писем.
В первой части статьи мы рассмотрели основы работы с утилитой SIP, предназначенной для создания Python-обвязок (Python bindings) для библиотек, написанных на языках C и C++. Мы рассмотрели основные файлы, которые нужно создать для работы с SIP и начали рассматривать директивы и аннотации. До сих пор мы делали обвязку для простой библиотеки, написанной на языке C. В этой части мы разберемся, как делать обвязку для библиотеки на языке C++, которая содержит классы. На примере этой библиотеки мы посмотрим, какие приемы могут быть полезны при работе с объектно-ориентированной библиотекой, а заодно разберемся с новыми для нас директивами и аннотациями.
Недавно прочитал статью о том, что акции-аутсайдеры (те, что максимально упали в цене за месяц) индекса Мосбиржи имеют бОльшие перспективы роста, нежели в среднем по индексу.
Эта статья описывает страдания начинающего процесс изготовления самоходной платформы на базе МК esp8266 с micropython, управляемой через встроенный веб-сервер.
Иногда во время работы над проектом на языке Python возникает желание использовать библиотеку, которая написана не на Python, а, например, на C или C++.
Как можно расширить синтаксис Python и добавить в него необходимые возможности? Прошлым летом на PyCon я постарался разобрать эту тему. Из доклада можно узнать, как устроены библиотеки pytest, macropy, patterns и как они добиваются таких интересных результатов. В конце есть пример кодогенерации с помощью макросов в HyLang — Lisp-образного языка, бегущего поверх Python.
На определённом этапе разработки своей игры я осознал, что мне нужна система диалогов с лицами-аватарами. Поэтому я решил создать генератор лиц на основе знаменитой игры Papers, Please.
Сортировку кучей (она же — пирамидальная сортировка) на Хабре уже поминали добрым словом не раз и не два, но это всегда была достаточно общеизвестная информация. Обычную бинарную кучу знают все, но ведь в теории алгоритмов также есть:
n-нарная куча; куча куч, основанная на числах Леонардо; дерамида (гибрид кучи и двоичного дерева поиска); турнирная мини-куча; зеркальная (обратная) куча; слабая куча; юнгова куча; биномиальная куча; и бог весть ещё какие кучи…
Думаю, что тебя раздражает каждый раз вводить капчу при входе на любимый сайт. И было бы логично предположить, что существует сервис для решения этой проблемы. И действительно, такой есть.
Пока наши новинки печатаются в типографии, а офис сидит на удаленке, мы решили поделиться отрывком из книги Пола и Харви Дейтелов «Python: Искусственный интеллект, большие данные и облачные вычисления»
Недавно я открыл для себя альтернативу стандартной конструкции "expression_on_true if predicate else expression_on_false", которую я не встречал в справочниках:
В этой статье я расскажу как сделать простейшего телеграмм бота на Python для отправки текущей погоды в Москве.
Думаю многие любят знакомиться в соц. сетях и пользуются приложениями (например Tinder), но часто уходит много времени на то, что бы ставить лайки и отправлять первые сообщения. Я считаю что это монотонные действия которые только отталкивают от
общения и знакомства. Если ты программист, зачем быть как все, давай вместе со мной автоматизируем процесс монотонных действий и оставим свое внимание только для приятного общения, но обо всём по порядку.
Один преподаватель как-то сказал мне, что если поискать аналог программиста в мире книг, то окажется, что программисты похожи не на учебники, а на оглавления учебников: они не помнят всего, но знают, как быстро найти то, что им нужно.
Возможность быстро находить описания функций позволяет программистам продуктивно работать, не теряя состояния потока. Поэтому я и создал представленную здесь шпаргалку по pandas и включил в неё то, чем пользуюсь каждый день, создавая веб-приложения и модели машинного обучения.
Одна из проблем обучения нейронных сетей — переобучение. Это когда алгоритм научился хорошо работать с данными, которые он видел, а на других он справляется хуже. В статье мы рассказываем, как попытались решить эту проблему, совместив обучение градиентным спуском и эволюционным подходом.
В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.
В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.