Собрали в одном месте самые важные ссылки
читайте авторский блог
Одной из интересных и популярных (особенно перед разными юбилеями) задач является «раскрашивание» старых черно-белых фотографий и даже фильмов. Тема это достаточно интересная, как с математической, так и с исторической точки зрения. Мы рассмотрим реализацию этого процесса на Python, который любой желающий сможет запустить на своем домашнем ПК.
Home Assistant – популярное приложение с открытым исходным кодом для организации умного дома. Первый опыт автора в работе с Home Assistant основывается на попытке интеграции в него ‘умной рисоварки‘. Автор постарается описать основные компоненты и возможности данного приложения, с которыми ему привелось пошагово познакомиться. Статья является в чем-то обзором, в чем-то руководством для желающих начать свое знакомство с Home Assistant.
Тем, у кого мало свободного времени, советую пропустить присказку – первую главу – и перейти сразу ко второй. Вам нужно знать только, что работать мы будем с умной китайской рисоваркой от Xiaomi.
Не в каждой школе дети изучают программирование вообще, и такой простой и популярный язык, как Python, в частности. Поэтому у многих детей (и их родителей) возникает желание изучать программирование путём занятий на онлайн-курсах.
Бесплатные онлайн-курсы предполагают некоторые начальные знания, которые есть далеко не у всех детей.
Также у них отсутствует обратная связь с автором курса, и приходится рассчитывать на помощь таких же обучающихся. Эти проблемы решают платные курсы программирования для школьников.
Я принял участие и проанализировал пробные уроки нескольких курсов Python для школьников, и опишу здесь свои впечатления.
Если вы закончили школу уже во времена ЕГЭ, то вам известно, что все задания в нём имеют набор стандартных формулировок и упорядочены по типам. С одной стороны, это облегчает подготовку к экзамену: школьник уже знает, что нужно делать в задании, даже не читая его условия. С другой, любое изменение порядка вопросов может вызвать у него проблемы. Грубо говоря, на результат начинает больше влиять то, насколько человек довёл решения до автоматизма, а не то, как он рассуждает. Экзамен становится похож на работу скрипта.
Заключительная статья из серии как вызывать C/C++ из Python3, перебрал все известные способы как можно это сделать. На этот раз добрался до boost. Что из этого вышло читаем ниже.
Многие задачи в области Computer Science, которые на первый взгляд кажутся новыми или уникальными, на самом деле уходят корнями в классические алгоритмы, методы кодирования и принципы разработки. И устоявшиеся техники по-прежнему остаются лучшим способом решения таких задач!
Книга даст вам возможность глубже освоить язык Python, проверить себя на испытанных временем задачах, упражнениях и алгоритмах. Вам предстоит решать десятки заданий по программированию: от самых простых (например, найти элементы списка с помощью двоичной сортировки), до сложных (выполнить кластеризацию данных методом k-средних). Прорабатывая примеры, посвященные поиску, кластеризации, графам и пр., вы вспомните то, о чем успели позабыть, и овладеете классическими приемами решения повседневных задач.
Сегодня ночью вышел Python 3.8 и аннотации типов получили новые возможности:
Если вы ещё не знакомы с аннотациями типов, рекомендую обратить внимание на мои предыдущие статьи (начало, продолжение)
И пока все переживают о моржах, я хочу кратко рассказать о новинках в модуле typing
О новой лёгкой библиотеке, позволяющей писать в журнал systemd при помощи logging
Работая QA инженером, я разрабатывал систему автотестестирования. Столкнулся с рядом проблем:
Когда я только начинал работать над своей текстовой игрой, решил, что одной из её главных фич должны стать красивые художественные описания действий героев. Отчасти хотел «сэкономить», поскольку в графику не умел. Экономии не получилось, зато получилась Python библиотека (github, pypi) для генерации текстов с учётом зависимости слов и их грамматических особенностей.
Сегодня в гостях у подкаста Наталья Баль, кандидат биологических наук, научный сотрудник Института высшей нервной деятельности и нейрофизиологии Российской академии наук. Наталья обсудит Григорий Петровым, штатным нейрофизиологом подкаста, как поставить питон на службу науке.
В данной статье мы осуществим попытку проникновения в самое сердце "кровавого энтерпрайза" — в бухгалтерию. Вначале мы проведем исследование главной книги, счетов и баланса, выявим присущие им свойства и алгоритмы. Используем Python и технологию Test Driven Development. Здесь мы займемся прототипированием, поэтому вместо базы данных будем использовать базовые контейнеры: списки, словари и кортежи. Проект разрабатывается в соответствии с требованиями к проекту Empire ERP.
Поскольку весь необходимый базовый материал о PyTorch вы узнаете из этой книги, мы напоминаем о пользе процесса под названием «grokking» или «углубленное постижение» той темы, которую вы хотите усвоить. В сегодняшней публикации мы расскажем, как Кай Арулкумаран (Kai Arulkumaran) грокнул PyTorch (без картинок).
В статье описывается исследование, проведенное с целью проверки утверждения центральной предельной теоремы о том, что сумма N независимых и одинаково распределенных случайных величин, отобранных практически из любого распределения, имеет распределение, близкое к нормальному. Однако, прежде чем мы перейдем к описанию исследования и более подробному раскрытию смысла центральной предельной теоремы, не лишним будет сообщить, зачем вообще проводилось исследование и кому может быть полезна статья.
В первую очередь, статья может быть полезна всем начинающим постигать основы машинного обучения, в особенности если уважаемый читатель еще и на первом курсе специализации «Машинное обучение и анализ данных».
Я много писал о проектах компьютерного зрения и машинного обучения, таких как системы распознавания объектов и проекты распознавания лиц. У меня также есть опенсорсная библиотека распознавания лиц на Python, которая как-то вошла в топ-10 самых популярных библиотек машинного обучения на Github. Всё это привело к тому, что новички в Python и машинном зрении задают мне много вопросов.
В данной статье я расскажу о моём аддоне к блендеру, о причинах, побудивших меня к его созданию, процессе разработки и об «успехе» на YouTube.
В настоящее время более чем вероятно, что вам придется написать HTTP-клиент для вашего приложения, который должен будет общаться с другим HTTP-сервером. Повсеместность REST API делает HTTP VIP персоной. Вот почему знание шаблонов оптимизации является обязательным условием.
Оригинальная статья: Julien Danjou – Python and fast HTTP clients
В Python есть много HTTP-клиентов (библиотек); наиболее широко используемый и простой в работа с requests. Это стандарт де-фактора в наши дни.
Для своих игр в ASCII-арте я написал библиотеку bear_hug с очередью событий, коллекцией виджетов, поддержкой ECS и прочими полезными мелочами. В этой статье мы посмотрим, как с её помощью сделать минимальную работающую игру.
В ходе работы над курсачом для универа столкнулся со стандартным модулем Python — WebBrowser. Через этот модуль я хотел реализовать работу голосового ассистента с дефолтным браузером, но всё пошло не так гладко как ожидалось. Давайте для начала расскажу вам что это за модуль и как он вообще работает.
WebBrowser — это вшитый в Python модуль, который предоставляет собой высокоуровневый интерфейс, позволяющий просматривать веб-документы.
Недавно я сменил проект — пришел в новую разработку, где до меня не было никакого тестирования, ни ручного, ни автоматического. Условий на инструментарий (за исключением того, что это Python) заказчик не накладывал, так что я сделал собственный выбор. В этой статье я расскажу, почему в таких условиях предпочел Robot Framework. А в конце будет немного специально написанных под статью примеров, иллюстрирующих, о чем речь.