Собрали в одном месте самые важные ссылки
читайте авторский блог
Апрель 2018-го года. Мне было 14. Мы с друзьями играли в тогда очень популярную онлайн-викторину «Клевер» от ВКонтакте. Один из нас (обычно я) всегда был за ноутбуком, чтобы пытаться быстро гуглить вопросы и глазами искать в поисковой выдаче правильный ответ. Но вдруг я понял, что каждый раз выполняю одно и то же действие, и решил попробовать написать это на частично известном мне тогда Python 3.
Август 2018
На улице стоит жаркое лето, плавно подходящее к концу, а я сижу в прохладной комнате с ноутбуком и серфлю интернет в поиске интересных вещей. Потеряв надежду найти что-либо стоящее внимания, вдруг, натыкаюсь в одной из довольно популярных околоайтишных групп вконтакте пост со ссылкой на еще один айти ресурс. Квест показался мне интересным, ведь это почти классический текстовый квест в космическом сеттинге, да еще и программировать тут нужно!
Делюсь своей реализацией built-in тегов для формирования breadcrumbs с поддержкой разметки schema.org, а также поддержкой bootstrap css.
В статье "Различные шаблоны для рендеринга разных типов контента в поисковой выдаче" было показано, как сделать рендеринг различных шаблонов в зависимости от того, какой тип контента отрисовывается в поисковой выдаче на сайте. При этом ключевым моментом являлось то, что не приходилось делать проверочные условия для выбор шаблона. Информация о шбалоне хранилась в переменной TEMPLATE_PREVIEW, через которую шаблон подставлялся в include тег в шаблоне Django. В данном способе есть один большой недостаток. Дело в том, что тег include при каждом своём вызове ищет шаблон. Его необходимо было как-то кэшировать, что и решается в данной статье.
Вот и пришли новогодние праздники, а с ними и куча свободного времени, да еще и умный пылесос угодил ко мне в руки. Как только я увидел в приложении MiHome ручное управление, я сразу понял, что хочу сделать: будем управлять пылесосом с помощью геймпада Dualshock v4!
Есть желание поделиться с сообществом идеей, которая реализована в компании провайдере для оперативного реагирования на повреждение медного кабеля. Речь пойдет о витой паре и Ethernet. Конечно не претендую на изящность решений, однако сервис показал хорошие результаты работы.
В последней публикации уходящего года мы хотели упомянуть о Reinforcement Learning — теме, книгу на которую мы уже переводим.
Посудите сами: нашлась элементарная статья с Medium, в которой изложен контекст проблемы, описан простейший алгоритм с реализацией на Python. В статье есть несколько гифок. А мотивация, вознаграждение и выбор правильной стратегии на пути к успеху — это вещи, которые исключительно пригодятся в наступающем году каждому из нас.
Сейчас мы узнаем, какой из вариантов форматирования строк работает быстрее остальных.
Решили мы однажды заняться автоматизацией наших рутинных рабочих моментов. Создать у себя ансамбль(ansible) или что-нибудь в этом роде. Я полез на сайт ансамбля, посмотрел как он работает … подключается к удаленному серверу через ssh и выполняет какие-то там скрипты... Стоп, подумал я, разве для этого нужен ансамбль? Я и без ансамбля, сам ..., один… могу это сделать! А чтобы не только лишь я это мог, решил написать вэб приложение. Приложение назвали Update Server, сокращенно UpS.
Так повелось, что в процессе работы в МегаФоне, приходится сталкиваться с однотипными задачами при работе с RabbitMQ. Закономерно возникает вопрос: «Как упростить и автоматизировать выполнение таких задач?»
Первое решение, которое приходит в голову, использовать интерфейс HTTP, и, безусловно, из коробки RabbitMQ обладает хорошим веб-интерфейсом и HTTP API. Тем не менее, использование HTTP API не всегда удобно, а иногда и вообще невозможно (допустим у вас недостаточно прав доступа, а опубликовать сообщение ну очень хочется) в такие моменты возникает необходимость работы именно по протоколу AMQP
Писать про программирование можно не только прозой, но и стихами. Последнее, конечно, случается не часто — скажем, в блоге Intel такое бывало чуть менее, чем никогда. Однако в порядке эксперимента сегодня мы решили позволить себе; как это получилось — решать вам. Итак...
Финальная статья об инструменте для нагрузочного тестирования Locust. Сегодня поделюсь наблюдениями, которые накопил в процессе работы. Как всегда, видео прилагается.
За последние годы компьютерное зрение набрало популярность и выделилось в отдельное направление. Разработчики создают новые приложения, которыми пользуются по всему миру.
В этом направлении меня привлекает концепция открытого исходного кода. Даже технологические гиганты готовы делиться новыми открытиями и инновациями со всеми, чтобы технологии не оставались привилегией богатых.
Одна из таких технологий — распознавание лиц. При правильном и этичном использовании эта технология может применяться во многих сферах жизни.
В этой статье я покажу вам, как создать эффективный алгоритм распознавания лиц, используя инструменты с открытым исходным кодом.
Давайте поговорим о, как вы уже наверное смогли догадаться, нейронных сетях и машинном обучении. Из названия понятно, что будет рассказано о Mixture Density Networks, далее просто MDN, переводить название не хочу и оставлю как есть. Да, да, да… будет немного скучной математики и теории вероятности, но без неё, к сожалению, или к счастью, тут уж сами решайте, трудно представить мир машинного обучения. Но спешу вас успокоить, ее будет относительно мало и она будет не сильно сложная. Да и вообще ее можно будет пропустить, а просто посмотреть на небольшое количество кода на Python и PyTorch, все верно, сеть мы будем писать с помощью PyTorch, а так же на различные графики с результатами. Но самое главное то, что будет возможность немного разобраться и понять что же такое MD сети.
Оформляя тикет в системе управления проектами и отслеживания задач, каждый из нас рад видеть ориентировочные сроки решения по своему обращению.
Получая поток входящих тикетов, человеку/команде необходимо выстроить их в очередь по приоритету и по времени, которое займет решение каждого обращения.
Все это позволяет эффективнее планировать своё время обеим сторонам.
Под катом я расскажу о том, как проводил анализ и обучал ML модели, предсказывающие время решения оформляемых в нашу команду тикетов.
Допустим, вы имели какое-то отношение к фондовому рынку раньше. Или, не имея такового, увлеклись горячей (но в последние месяцы уже заметно похолодевшей....) темой криптовалют. Также предположим, что вы пошли еще дальше и решили, что «ручное управление» полетами уже неэффективно и надо бы автоматизировать свои светлые идеи и превратить мартышкин труд в нечто более технологичное. Ровно на этом моменте начинаются вопросы, которые я хотел бы обсудить в статье, а именно: есть ли готовое решение для бэктестинга торговых идей (бесплатное желательно), где взять исторические данные (в идеале бесплатно), а также что с этим всем потом делать, т.е. какие существуют решения для боевого запуска автоматизированных торговых систем, успешно проверенных на бэктесте? Примечание первое и второе: статья написана для Python-based библиотек и систем, как дела с доступностью для других языков судить не могу; в приоритете — зарубежные рынки и/или криптовалюты, относительно применимости к фондовому рынку РФ судить также не берусь.
На YouTube много бесплатных обучающих и курсов и туториалов.
Недавно я запустил репозиторий Homemade Machine Learning, который содержит примеры популярных алгоритмов и подходов машинного обучения, таких как линейная регрессия, логистическая регрессия, метод K-средних и нейронная сеть (многослойный перцептрон). Каждый алгоритм содержит интерактивные демо-странички, запускаемые в Jupyter NBViewer-e или Binder-e. Таким образом у каждого желающего есть возможность изменить тренировочные данные, параметры обучения и сразу же увидеть результат обучения, визуализации и прогнозирования модели у себя в браузере без установки Jupyter-а локально.
Одним холодным зимним вечером, хотелось согреться в офисе и проверить теорию одного коллеги, что C++ vector мог бы быстрее справиться с задачей, чем CPython list.
В компании мы разрабатываем продукты на базе Django и случилось так, что нужно было обработать один большой массив словарей. Коллега предположил, что реализация на C++ была бы гораздо быстрее, а меня не покидало чувство, что Гвидо и сообщество наверное немного круче нас в Си и возможно уже решили и обошли все подводные камни, реализовав всё гораздо быстрее.
Для проверки теории, я решил написать небольшой тестовый файл, в котором решил прогнать в цикле вставку 1М словарей одинакового содержания в массив и в vector 100 раз подряд.
Результаты хоть и были ожидаемые, но так же и внезапные.