Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Теперь, когда PEP 572 готов, я хочу чтобы больше никогда в жизни мне не надо было так дико бороться за PEP сталкиваясь с таким количеством людей презирающих мои решения.
Я, как всегда, никуда не собиралась, когда в новостной ленте «ВКонтакте» вдруг увидела сообщение, что завтра последний день подачи заявок на Django Girls в Санкт-Петербурге — мастер-класс по программированию на Python для женщин. Обычно я читаю такие сообщения, когда регистрация на мероприятие уже закрыта. У меня особое везение на такие дела — узнать о событии на следующий день после его завершения. Поэтому, когда я поняла, что появилась реальная возможность попасть на бесплатный тренинг по Python, то быстро заполнила заявку, на всякий случай забронировала отель и стала ждать.
Мне кажется, я сразу знала, что меня примут, иначе как объяснить, что я проморгала аналогичное событие в Москве месяцем раньше и попала именно в Санкт-Петербурге! Можно ли придумать лучшее время для поездки: лето и белые ночи, чемпионат мира с возможностью посетить фан-зону на Конюшенной площади, знакомство с IT-сообществом Django Girls и офисом Wargaming, и под занавес праздник «Алые паруса»!
Для тех, кто умеет работать с AMI Asterisk, ничего интересного тут нет. Для тех, кто только начинает что-то делать, вряд ли разберётся в моём коде (хотя я старался писать понятно). Вангую комментарии вроде: «Зачем использовать Хабр для своих заметок?». С другой стороны, приведённый под катом скрипт может стать кому-то отправной точкой. Скрипт ничего не делает кроме того, что шлёт в консоль все события из AMI и умеет их фильтровать. Для примера, я показываю в консоле все звонки, которые попадают в любой из контекстов «zadarma-in» или «sibseti_in». Если заинтересовал, прошу под кат
Сейчас в программе 25 докладов и 3 воркшопа. Кроме этого, впервые в России мы проведем Core Development Panel. Три Python Core Developer-а: Юрий Селиванов (EdgeDB, Канада), Андрей Светлов (aiohttp, Украина) и Christian Heimes (Red Hat, Германия) ответят на любые вопросы из зала: про будущее python, про проблемы, сообщество и все, что вас интересует. В общем, готовьте вопросы, будет интересно!
Разбил много кружек в поисках решения для быстрого получения длинных историй цен для большого количества активов в Python. Ещё имел смелость желать работать с ценами в numpy-массивах, а лучше сразу в pandas.
Стандартные подходы в лоб работали разочаровывающе, что приводило к выполнению запроса к БД в течение 30 секунд и более. Не желая мириться, я нашёл несколько решений, которые полностью меня удовлетворили.
Несмотря на то что Python и Javascript довольно сильно отличаются, существует много схожего, о чем должен знать любой фулстек разработчик. В этой серии из 4-х статей мы увидим что есть общего в обоих языках, и рассмотрим ряд известных проблем а также способы их решения.
В процессе разработки сайта возникает необходимость сделать поисковую выдачу, при этом если сайт со временем становится большим, то и в поисковой выдаче могут появиться различные виды контента, а не только статьи, например. Для того, чтобы каждый вид контента имел собственно отображение, можно сделать в шаблоне обычный выбор через if else и какой-нибудь параметр Type или же сделать через переменную, содержащую путь к шаблону отображения объекта без всяких if else.
Всем здравствуйте, вот мы и подошли к конечной части. Приятного чтения!
К написанию статьи меня подтолкнула вот эта новость (+исследование) про изобретение генератора мемов учеными из Стэнфордского университета. В своей статье я попытаюсь показать, что вам не нужно быть ученым из Стэнфорда, чтобы делать с нейросетями интересные вещи. В статье я описываю, как в 2017 году мы обучили нейронную сеть на корпусе из примерно 30 000 текстов и заставили ее генерировать новые интернет-мемы и мемы (коммуникационные знаки) в социологическом смысле слова. Описан использованный нами алгоритм машинного обучения, технические и административные трудности, с которыми мы столкнулись.
Предположу, что для управления Python окружением в вашем проекте до сих пор используется pip и virtualenv.
Если это так, то позвольте рассказать о таком инструменте, как Pipenv.
Pipenv — это современный инструмент для управления рабочим окружением в Python.
Основные возможности pipenv:
HDF5 позволяет эффективно хранить большие объемы данных
При работе с большими объемами данных, будь то экспериментальные или имитируемые, их хранение в нескольких текстовых файлах не очень эффективно. Иногда вам нужно получить доступ к конкретному подмножеству данных, и вы хотите сделать это быстро. В этих ситуациях формат HDF5 решает обе проблемы благодаря очень оптимизированной надстроенной библиотеке. HDF5 широко используется в научных средах и имеет отличную реализацию в Python, предназначенную для работы с NumPy прямо из коробки.
В конце зимы этого года прошло соревнование IEEE's Signal Processing Society — Camera Model Identification. Я участвовал в этом командном соревновании в качестве ментора. Об альтернативном способе формирования команды, решении и втором этапе под катом
Не так давно на просторах интернета узнал о такой замечательной и удивительной копии Вавилонской библиотеки как о формуле Таппера. Вернее, это больше неравенство Таппера, чем формула. Особенность данного неравенства — оно создает собственное же изображение на графике. Просто посмотрите на это чудо!
Статья о том, как сделать поисковую страницу на сайте, которая будет искать контент сразу в нескольких моделях данных, без использования сторонних библиотек.
Опубликованная в 2014-м исследовательская работаGenerative Adversarial Nets (GAN) стала прорывом в сфере генеративных моделей. Ведущий исследователь Янн Лекун назвал состязательные сети (adversarial nets) «лучшей идеей в машинном обучении за последние двадцать лет». Сегодня благодаря этой архитектуре мы можем создать ИИ, который генерирует реалистичные изображения кошек. Круто же!
Поводом для публикации послужила запись в блоге Rstudio: «Shiny 1.1.0: Scaling Shiny with async», которая может очень легко пройти мимо, но которая добавляет очень весомый кирпичик в задаче применения R для задач бизнеса. На самом деле, в dev версии shiny асинхронность появилась примерно год назад, но это было как бы несерьезно и «понарошку» — это же dev версия. Перенос в основную ветку и публикация на CRAN является важным подтверждением, что многие принципиальные вопросы продуманы, решены и протестированы, можно спокойно переносить в продуктив и пользоваться.
А что еще есть в R, кроме «бриллианта», что позволяет превратить его в универсальный аналитический инструмент для практических задач?
Общая суть сортировок вставками такова: Перебираются элементы в неотсортированной части массива. Каждый элемент вставляется в отсортированную часть массива на то место, где он должен находиться. Траффик