Собрали в одном месте самые важные ссылки
читайте нас в Telegram
13 августа в Avito прошла встреча специалистов по Data Science, использующих Python.
В этой заметке я хочу рассказать о том, как можно достаточно легко строить интерактивные графики в Jupyter Notebook'e с помощью библиотеки plotly. Более того, для их построения не нужно поднимать свой сервер и писать код на javascript. Еще один большой плюс предлагаемого подхода — визуализации будут работать и в NBViewer'e, т.е. можно будет легко поделиться своими результатами с коллегами. Вот, например, мой код для этой заметки.
В данной статье разобран принцип работы метода машинного обучения«Обучение с подкреплением» на примере физической системы. Алгоритм поиска оптимальной стратегии реализован в коде на Python с помощью метода «Q-Learning».
Обучение с подкреплением — это метод машинного обучения, при котором происходит обучение модели, которая не имеет сведений о системе, но имеет возможность производить какие-либо действия в ней. Действия переводят систему в новое состояние и модель получает от системы некоторое вознаграждение. Рассмотрим работу метода на примере, показанном в видео. В описании к видео находится код для Arduino, который реализуем на Python.
В этой статье хочу рассказать, как мы решили не типовую задачу на FreePBX. Под определением «не типовую» я имею в виду, что ее нельзя решить стандартными средствами, без дополнительных инструментов.
В большинстве популярных языков программирования и экосистем с зависимостями все плохо. Как правило, создатели нового языка программирования уделяют этому не очень много внимания: просто потому, что в новом языке еще нет сотен тысяч библиотек для разных архитектур и версий, нетривиальным образом зависящих друг от друга. А когда эти сотни тысяч библиотек появляются – уже поздно что-нибудь менять.
Привет, Хаброжители! Наконец-то у нас вышла книга Билла Любановича:
Эта книга идеально подходит как для начинающих программистов, так и для тех, кто только собирается осваивать Python, но уже имеет опыт программирования на других языках. В ней подробно рассматриваются самые современные пакеты и библиотеки Python.
Стилистически издание напоминает руководство с вкраплениями кода, подробно объясняя различные концепции Python 3. Под обложкой вы найдете обширный материал от самых основ языка до сравнительно сложных и узких тем.
Severcart - бесплатная, дружественная и элегантная программа для управления перемещениями картриджей. Будет хорошим подспорьем по отслеживанию, систематизации и предоставлению доступа к информации о картриджах, используемых в лазерных и цветных принтерах различных производителей.
Автор делится своими соображениями по поводу сигналов в django: когда их лучше использовать, а когда нет.
Я работаю в небольшом израильском стартапе, наш продукт — платформа для заказа еды из ресторанов, кафе и магазинов. В отличие от десятков подобных сервисов, мы монополисты на студенческом рынке в США. Мы обрабатываем на пике несколько сотен тысяч заказов в день и один из платежных шлюзов в продакшне построен на автоматизации GUI для Win32 приложения с помощью библиотеки pywinauto. как мы к этому пришли
Некоторое время назад на Хабре публиковался перевод статьи под названием "Искусство командной строки". Среди прочего, в статье было рекомендовано освоить vim. Исходник статьи, выложенный на Гитхаб, по иронии судьбы, оказался совершенно непригодным к редактированию именно этим редактором, так как в нём на один параграф приходилась ровно одна строка.
Я тогда выразил своё недоумение автору и попросил его выровнять текст на 80 символов. Но после непродолжительной дискуссии в коментариях дали ссылку на описание форматирования исходников литературных текстов по семантическому принципу. Идея, заложенная в этом принципе в общем довольно простая, но я был поражён её глубиной, которой, пусть и запоздало, хочу поделиться с окружающими
За долгое время у меня накопилось много различных заметок, подсказок и шпаргалок на различные темы, как связанные с it, так и совсем не связанные. Появилась необходимость это удобно и структурировано хранить.
Я попробовал различные wiki движки, но не всё мне в них нравилось, иногда функционала было недостаточно, а иногда было слишком много. Я подумал, что если хочешь сделать хорошо — сделай это сам нужно написать свой велосипед.
Мне давно хотелось написать web-приложение на Python, поэтому выбор пал на этот язык. Под катом исходный код и описание, а также ссылка на репозиторий.
В первой части я забыл упомянуть, что если случайно сгенерированные данные не по душе, то можно взять любой подходящий пример отсюда. Можно почувствовать себя ботаником, виноделом, продавцом. И все это не вставая со стула. В наличии множество наборов данных и одно условие — при публикации указывать откуда взял данные, чтобы другие смогли воспроизвести результаты.
На той неделе darkk описал свой подход к проблеме распознавания состояния моста(сведён/разведён).
Алгоритм, описанный в статье использовал методы компьютерного зрения для извлечения признаков из картинок и скармливал их логистической регрессии для получения оценки вероятности того, что мост сведён.
Сегодня расскажу о том, как управлять компьютером с мобильного устройства. Нет, это не очередной аналог radmin'a, и не пример того, как можно поиздеваться над компьютером друга. Речь пойдет об удаленном управлении демоном, а точнее — о создании интерфейса для управления демоном, написанном на Python.
Каждый должен делать свою работу качественно и в срок. Допустим, вам нужно сделать веб-сервис классификации картинок на базе обученной нейронной сети с помощью библиотекиcaffe. В наши дни качество — это асинхронные неблокирующие вызовы, возможность параллельного исполнения нескольких заданий при наличии свободных процессорных ядер, мониторинг очередей заданий… Библиотека RQ позволяет реализовать все это в сжатые сроки без изучения тонны документации.
3-4 июля недалеко от Москвы прошла четвертая международная конференция python-разработчиков PyCon Russia. Под катом — много видео, презентации и фотографии. А еще посмотрите отчетный ролик — в нем коротко о том, что было на PyCon-2016 плюс немного из истории конференции
Этим постом я начну цикл «Нейронные сети для новичков». Он посвящен искусственным нейронным сетям (внезапно). Целью цикла является объяснение данной математической модели. Часто после прочтения подобных статей у меня оставалось чувство недосказанности, недопонимания — НС по-прежнему оставались «черным ящиком» — в общих чертах известно, как они устроены, известно, что делают, известны входные и выходные данные. Но тем не менее полное, всестороннее понимание отсутствует. А современные библиотеки с очень приятными и удобными абстракциями только усиливают ощущение «черного ящика». Не могу сказать, что это однозначно плохо, но и разобраться в используемых инструментах тоже никогда не поздно. Поэтому моей первичной целью является подробное объяснение устройства нейронных сетей так, чтобы абсолютно ни у кого не осталось вопросов об их устройстве; так, чтобы НС не казались волшебством. Так как это не математический трактат, я ограничусь описанием нескольких методов простым языком (но не исключая формул, конечно же), предоставляя поясняющие иллюстрации и примеры.
Интересовались ли вы когда-нибудь, как именно Питон исполняет ваш код? А хотите научиться создавать байткод Питона кустарным методом? В этом выступлении мы разберём внутреннее представление байкода CPython, а также продемонстрируем некоторые техники изменения объектов кода для просто так и для пользы.
Умные часы и фитнес-браслеты могут показывать не только число шагов и время, но и много других вещей. Чтобы их извлечь, нам понадобится Python, машинное обучение и умение удивляться. Заодно узнаем, что нейронные сети в Python - это просто и быстро. Глеб Ивашкевич @ Moscow Python Meetup 37 Слайды: http://www.moscowpython.ru/meetup/37/watch-the-hands/