Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Случается в нашей жизни, уважаемые коллеги, что хочешь сделать как проще, а получается как у новичка. И, что интересно, существует не мало мощных инструментов, которые предлагают простое решение в обмен на душу. Я имею ввиду, что цена абстракции бывает несоразмерна красоте её использования. Для меня примером такого неравноценного обмена стал Django Rest Framework 3.4.0, его механизм ViewSets и необходимость вывести подробную документацию по разрабатываемому API.
Подготовка релиза картографических данных включают в себя запуск массовой обработки данных. Некоторые задачи хорошо ложатся на идеологию Map-Reduce. В этом случае задача инфраструктуры традиционно решается использованием Hadoop или YT
В реальности часть задач таковы, что разбиение их на маленькие подзадачи невозможно, или нецелесообразно (из-за наличия существующего решения и дорогой разработки, например). Для этого мы в Яндекс.Картах разработали и используем свою систему планирования и выполнения взаимосвязанных задач. Одним из элементов такой системы является планировщик, запускающий задачи на кластере с учетом доступных ресурсов.
Доклад про то как использование множества современных технологий не всегда позволяет реализовать проект в срок. Александр Боргардт @ Moscow Python Meetup 37 Слайды: http://www.moscowpython.ru/meetup/37/how-not-to-drown-in-a-sea-of-tech/
История началась, когда я переехал жить на остров Декабристов в Санкт-Петербурге. Ночью, когда мосты развели, этот остров вместе с Васильевским полностью изолирован от большой земли. Мосты при этом нередко сводят досрочно, иногда на час раньше опубликованного расписания, но оперативной информации об этом нигде нет. После второго "опоздания" на мосты, я задумался об источниках информации о досрочной сводке мостов. Одним из пришедших в голову вариантов была информация с публичных веб-камер. Вооружившись этими данными и остаточными знаниями со специализации по ML от МФТИ и Яндекса, я решил попробовать решить задачу "в лоб". Картинки и кишочки под катом
Приветствую, уважаемое сообщество! Забегая вперед прошу прощения у тех, кто ожидает новизны или революционных идей. Их тут нет. Но есть вполне хорошая прикладная система. Системы поддержки принятия решений сейчас набирают обороты. Причем я не буду особо останавливаться на перечислении способов реализации. Оговорюсь только об основных свойствах. Я бы очень упрощенно и обобщенно назвал эти системы вероятностными. То есть они выдают рекомендации с известной долей вероятности используя накопленную и проанализированную статистику. Не скажу что это плохо. Тема BigData и Machine learning нынче в тренде. Так же эти системы работают по принципу черного ящика. Поэтому проверить достоверность работы заложенной модели не всегда можно выявить. Читать дальше →
Хочу поделиться с вами горячими клавишами, которыми пользуюсь или к которым пытаюсь привыкнуть в своей повседневной работе. В современных средах их количество может просто зашкаливать, но постепенное добавление новых сочетаний в копилку, способно значительно повысить вашу продуктивноть. Приведенные сочетания относятся к редактированию, навигации, рефакторингу и справедливы только для раскладки Default for XWin (Linux). Читать дальше →
На Moscow Python Meetup 37 Григорий Петров выступил с импровизацией на тему quality assurance.
Евангелисты MoscowPython Валентин Домбровский и Григорий Петров открывают 37-й митап MoscowPython и рассказывают о предстоящей конференции Moscow Python Conf. http://conf.python.ru
Команда dev2dev.ru совместно с Python сообщестом PyNSK организует конференцию 1-2 октября 2016 года в Красноярске.
Я расскажу о библиотеке для Питона с лаконичным названием f. Это небольшой пакет с функциями и классами для решения задач в функциональном стиле.
— Что, еще одна функциональная либа для Питона? Автор, ты в курсе, что есть fn.py и вообще этих функциональных поделок миллион?
— Да, в курсе.