Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Это перевод вчерашней заметки от Simon Willison
Я облажался, бездумно используя git (git checkout -- — не на том файле) и умудрился удалить код, который я только что написал… но он все еще был загружен в исполняемый процесс в докер-контейнере. Вот, как я восстановил код, используя https://pypi.python.org/pypi/pyrasite/ и https://pypi.python.org/pypi/uncompyle6
Совсем недавно пришла в голову идея сделать "говорилку" на русском языке. В голове была простенькая схема наподобие:
1) Распознать речь с микрофона
2) Придумать более — менее разумный ответ.
В этом пункте можно сделать много интересного.
Например реализовать управление чем — нибудь физическим и не очень.
3) Преобразовать этот самый ответ в речь и воспроизвести.
Определиться, какую книгу по программированию читать следующей, трудно, да и рискованно.
Как и положено разработчику, наверняка, у вас мало времени, и львиную его долю вы тратите на чтение книг. Вы могли бы программировать. Вы могли бы отдыхать. Но вместо этого вы выделяете драгоценное время на развитие своих навыков.
Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE.
Недавно в нашем блоге мы рассказывали об использовании предметно-ориентированных языков для решения конкретных задач разработки с помощью Python. Сегодня речь пойдет о тестировании — в частности, о том, почему стопроцентное покрытие тестами кода это на самом деле плохо.
Материал подготовлен на основе выступления разработчика Positive Technologies Ивана Цыганова на конференции Moscow Python Conf (слайды, видео).
Небольшая заметка-введение в инструмент анализа данных на Python — pandas
Работая в конструкторском отделе, я столкнулся с задачей — рассчитать трудоёмкость разработки конструкторской документации. Если брать за основу документ: «Типовые нормативы времени на разработку конструкторской документации. ШИФР 13.01.01" (утв. Минтрудом России 07.03.2014 N 003)», то для расчета трудоёмкости чертежа детали нам необходимы следующие данные:
Несмотря на то, что вопросам точности компьютерных вычислений посвящено очень много публикаций, некоторые из них, на наш взгляд, всё же остаются не до конца четко раскрытыми. А именно:
1. Какое количество верных цифр n гарантированно имеет десятичное число, представленное двоичным m разрядным кодом в формате числа с плавающей точкой.
2. Как влияет нормализация чисел с плавающей точкой на точность представления числа при его преобразовании из одной системы счисления в другую и при арифметических действиях, выполняемых на компьютере.
3. Как влияет округление числа, представленного в двоичном виде на его десятичный эквивалент.
4. Как положение виртуальной точки в машинном слове влияет на значение числа, представленного в экспоненциальной форме.
Законы Зипфа оописывают закономерности частотного распределения слов в тексте на любом естественном языке[1]. Эти законы кроме лингвистики применяться также в экономике [2]. Для аппроксимации статистических данных для объектов, которые подчиниться Законам Зипфа используется гиперболическая функция вида:
В Python отсутствует явное средство для того что бы в цикле с глубокой вложенностью перейти на нужный уровень, однако далее будет показан один из возможных вариантов решения проблемы используя стандартные элементы конструкции языка.
Илья Лебедев (Devman) @ Python Junior Meetup №1
"Правильно называть сущности очень важно. Плохие названия превратят хороший код в плохой и нечитаемый. В докладе я расскажу о практиках, которые помогут начинающим разработчикам. Их легко применять на практике и они делают код заметно качественнее".
Слайды: https://speakerdeck.com/moscowdjango/pravila-imienovaniia-funktsii
Григорий Петров (Voximplant) @ Python Junior Meetup № 1
"В своем выступлении я впервые попробую объяснить переменные: не рассказывая предварительно как работает компьютер, память и компилятор; не вводя мешок дополнительных сущностей вроде «присваивание», «данные», «оператор» и непереводимое «evaluate»; не проводя аналогии с математикой".
Слайды: https://speakerdeck.com/moscowdjango/chto-takoie-pieriemiennyie
Александр Хаёров (Ingram Micro) @ Python Junior Meetup №1
"Типизация — важный аспект, который зачастую характеризует тот или иной язык программирования, наделяя его разными свойствами. В докладе будут рассмотрена общая информация о типизации, ее роли. Узнаем подробно какая типизация в Python и как использовать для написания лучшего кода".
Слайды: https://speakerdeck.com/moscowdjango/sistiema-tipov-v-python
Рассмотрю с практической стороны создание своего предметно-ориентированного языка. Продемонстрирую почти готовое решение возникшей задачи и расскажу, в каких случаях может потребоваться внедрение DSL.
В докладе мы рассмотрим создание переносимого дистрибутива Python для любых нужд и операционных систем (Windows & Linux). Познакомимся с существующими и альтернативными решениями. Сравним их достоинства и недостатки.
Первая статья посвящена первичному анализу данных с Pandas.
Пока в серии планируется 7 статей, идущих вместе с тетрадками Jupyter (репозиторий mlcourse_open), соревнованиями и домашними заданиями.
Далее идет список будущих статей, описание курса и собственно, первая тема – введение в Pandas.
GitHub предоставил возможность миллионам разработчиков с легкостью публиковать свои проекты и тем самым привлекать пользователей и единомышленников. Часто перед разработчиками возникает проблема неэффективного использования ресурсов — они тратят сотни часов на создание проекта с целью продвинуть его на GitHub, а получают максимум две звезды.
Приветствую тебя %username%. Прочитав статью о способах обхода sudo, решил тоже попробовать описать нечто подобное, но для языка Python. Спасибо root-me за такие задачки. Решая их, можно многое узнать о работе того или иного механизма. Прошу строго не судить, это моё первое творение.
Начнём!
В пилотной части я рассказал о задаче как можно подробнее. Рассказ получился долгим и беспредметным — в нем не было ни одной строчки кода. Но без понимания задачи очень сложно заниматься оптимизацией. Конечно, некоторые техники можно применять, имея на руках только код. Например, кешировать вычисления, сокращать ветвления. Но мне кажется, что некоторые вещи без понимания задачи просто никогда не сделать. Это и отличает человека от оптимизирующего компилятора. Поэтому ручная оптимизация все еще играет огромную роль: у компилятора есть только код, а у человека есть понимание задачи. Компилятор не может принять решение, что значение "4" достаточно случайно, а человек может.
Мне выпала честь сделать первый пост, и я, пожалуй, отклонюсь от своей привычной нейросетевой тематики и сделаю пост о базовых понятиях машинного обучения на примере одной из самых простых и самых полезных моделей — линейной регрессии. Я буду использовать язык питон для демонстрации экспериментов и отрисовки графиков, все это вы с легкостью сможете повторить на своем компьютере. Поехали.