Собрали в одном месте самые важные ссылки
читайте авторский блог
Эта история о том, как python разработчик и инженер-электронщик совместными усилиями сделали прототип промышленного ЧПУ. Мы использовали Python, Cython и язык С, чтобы разработать гибкую систему, способную управлять различными аппаратными конфигурациями для решения производственных задач. В рамках доклада мы рассмотрим следующие темы: Архитектура приложения ЧПУ: выбор дизайна, обеспечивающего гибкость и адаптивность системы Расчет точной траектории движения Интеграция аппаратного и программного обеспечения Достижение короткого цикла синхронизации для нескольких приводов (двигателей) Приглашаем вас принять участие в докладе, где мы поделимся опытом создания легковесного ЧПУ с поддержкой EtherCAT на Python и C.
В этом докладе я расскажу о неожиданностях использования serverless по сравнению с server подходом. Зачем и почему serverless нужен Как делать версионирование, canary deployment, релизы в AWS Lambda и другие вещи для production ready бэкенд разработки Об особенностях python разработки под лямбды, о бесполезности асинхронности, сложности дебага ошибок, о поражающей скорости деплоймента кода в продакшен Как потратить сотни долларов на метрики и логи, которые никто не читает О том, как не сломать базу, если в нее ходят сразу 2–3 тысячи экземпляров лямбд
Как же все-таки следить за качеством своей кодовой базы? Как при минимальных затратах со стороны разработки получить максимальный профит и минимальное количество глупых ошибок? В этом докладе мы разберём существующие решения для тайп чекеров, после чего станет яснее, какой подходит вам лучше всего. Разберем слабости и преимущества четырех популярных решений на рынке. Узнаем об особенностях каждого из них. Посмотрим, что они умеют, кроме тайп чекинга. Проведем сравнение с разных точек зрения, чтобы определить их сильные стороны, после чего вы сможете выбрать, какой же подходит именно вам.
Функциональное программирование — не самый популярный подход к написанию кода на Python. Но у ФП в Python есть активные сторонники. Они широко применяют и продвигают модули вроде functools, itertools из стандартной библиотеки и пакеты вроде toolz, funcy, returns и др. Мы рассмотрим, как идеи элегантного ФП кода и красивых математических абстракций сталкиваются с реальностью интерпретатора CPython и культуры pythonic кода. Доклад будет полезен программистам на Python, интересующимся функциональным программированием (уже применяющим его или заинтересованным в применении) и желающим обсудить, насколько ФП нужно и полезно им в Python. Предполагается знание основных концепций ФП (чистые функции, побочные эффекты, функции высшего порядка).
В мае разработчики движка Modular опубликовали публичную версию языка Mojo. Код на Mojo выглядит один-в-один, как код на питоне, и это не случайно. Mojo — это одновременно под- и надмножество питона, позволяющее выжимать адскую производительность в требовательных к CPU задачах — например, в задачах ML и AI. Подробностей пока мало: запустить Mojo локально нельзя, можно лишь воспользоваться специальной версией Jupyter Notebook, доступ к которой выдаётся через лист ожидания. Из материалов про Mojo пока доступны в основном только красивые презентации его авторов (показывающие, например, ускорение относительно CPython в тысячи раз на задаче умножения двух матриц). Я получил доступ к превью Mojo и немного в нём поковырялся. Так что теперь давайте вместе во время доклада попробуем разобраться, есть ли у этой разработки шансы на революцию, или это просто попытка выехать на хайпе вокруг AI?
В рамках доклада я расскажу про возможные пути развития нового сервиса, а также поделюсь опытом, куда может завести недопроектирование и перепроектирование на разных этапах развития проекта. Затронем: - Общение с бизнесом - Проектирование - Тестирование и многое другое Доклад будет полезен тем, кто хочет запустить сервис, который будет поддерживаться и развиваться в условиях меняющихся требований.
В этой статье я расскажу про своё видение работы с цветом при визуализации графиков. Буду показывать все на примерах — уверен, они вам понравятся. Я покажу не только картинки было-стало, но и приведу примеры кода, а также объясню логику принятия решений: как использовать ту или иную палитру в конкретной задаче.
Гиперпараметры — это параметры, которые не учатся в процессе обучения модели. Они задаются заранее. От выбора гиперпараметров напрямую зависит качество и эффективность модели, а их оптимизация может улучшить результаты предсказаний.
Это вторая и заключительная часть статьи, в которой мы рассматриваем задачу классификации экзопланет. Если предыдущая статья была больше про предобработку данных, то здесь мы будем строить модели, отбирать лучшие и экспериментировать.
Очередной выпуск англоязычного подкаста Python Bytes
Сценарии использования ИИ для учебы на поверхности. Поговорим же здесь про то, как можно использовать ChatGPT для обучения программированию.
Линейный дискриминантный анализ (Linear Discriminant Analysis или LDA) — алгоритм классификации и понижения размерности, позволяющий производить разделение классов наилучшим образом.
А теперь о том, что происходило в последнее время на других ресурсах.
Очередной выпуск англоязычного подкаста Python Bytes
В этой статье мы создадим desktop-приложение, которое по нашему запросу будет сохранять на нашем диске заданное количество картинок. Так как картинок будет много, мы воспользуемся асинхронностью Python для конкурентной реализации операций ввода-вывода. Посмотрим, чем отличаются библиотеки requests и aiohttp. Также создадим два дополнительных потока приложения, чтобы обойти глобальную блокировку интерпретатора Python.
В данной работе рассматривает пример создания симуляционной модели четырёхколёсной мобильной платформы с рулевым управления по типу Аккреманна, с использованием фреймворка ROS, контроллер написан на языке Python.
Метод опорных векторов (Support Vector Machine или просто SVM) — мощный и универсальный набор алгоритмов для работы с данными любой формы, применяемый не только для задач классификации и регрессии, но и также для выявления аномалий. В данной статье будут рассмотрены основные подходы к созданию SVM, принцип работы, а также реализации с нуля его наиболее популярных разновидностей.
Дерево решений CART (Classification and Regressoin Tree) — алгоритм классификации и регрессии, основанный на бинарном дереве и являющийся фундаментальным компонентом случайного леса и бустингов, которые входят в число самых мощных алгоритмов машинного обучения на сегодняшний день. Деревья также могут быть не бинарными в зависимости от реализации. К другим популярным реализациям решающего дерева относятся следующие: ID3, C4.5, C5.0.