Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Данная статья рассчитана на специалистов области физических систем безопасности и в частности контроля доступа. Я предполагаю, что статья может быть интересна тем, кто не обладает навыками в программировании, но всегда хотел попробовать реализовать что-то здесь и сейчас, с возможностью непосредственно испытать свою работу на практике.
Мы разработали open-source библиотеку dedoc, которая помогает разработчикам и дата-сайентистам в пару строк кода читать различные форматы текстовых документов и изображений с текстом, и далее приводить информацию к единой аккуратной структуре.
На конец 2023 года язык программирования Python является самым популярным по индексу TIOBE. Что касается работы, то по количеству вакансий в мире язык Python занимает второе место (после JavaScript/TypeScript). Поэтому у соискателей на должность, где требуется Python, возникает потребность подготовки к собеседованиям.
Этот материал посвящён тому, как добавлять собственные данные в предварительно обученные LLM (Large Language Model, большая языковая модель) с применением подхода, основанного на промптах, который называется RAG (Retrieval‑Augmented Generation, генерация ответа с использованием результатов поиска).
Поддержка преобразования речи в текст была в OpenAI API уже давно, а вот из текста в речь, а также распознавание изображений было добавлено совсем недавно. В связи с чем продолжаю свою серию туториалов по разработке собственного ChatGPT бота в Telegram.
Phoenix — это библиотека с открытым исходным кодом, направленная на ML Observability, которую выпустили разработчики из Arize AI — компании, известной большим опытом в вопросах наблюдаемости ML систем.
Все мы знаем что такое клиент-серверное приложение, на тему их создания написано не мало статей. В этой статье хотелось бы поделиться с вами наработками нашей компании, которыми мы пользуемся в своих Django проектах.
Вчера мне потребовалось применить его в приложении, однако не удалось найти руководства, как сделать это быстро. Документация Яндекса хороша, но предполагает, что опыт работы с Yandex Cloud уже имеется. В отсутствие такого опыта документация выглядит фрагментированной.
А теперь о том, что происходило в последнее время на других ресурсах.
В этой статье на примерах рассмотрим новые возможности , которые были добавлены в этой версии.
Начальство загорелось внедрить нейронные сети на фермы. Об этом и пойдет повествование.
Обучение завершено успешно, но не было ощущения полноценности — на курсах не учили, как сделать самостоятельно деплой приложения на Django. И никто из студентов не задавался эти вопросом 😁Так что я решил закрыть этот вопрос и все-таки пройти путь по развертыванию django-приложения.
Мы совместили системы обнаружения объектов и распознавания изображений для создания модели, классифицирующей детали конструктора Lego Technic в реальном времени. В этой статье я расскажу о том, с какими сложностями столкнулся наш проект, и как мы довели его до успешного завершения.
Мы разрабатываем цифровые продукты для логистической отрасли, в первую очередь, для ж/д перевозок.В кулуарах московского офиса ПГК мы обсуждаем и нерабочие темы. Топовую строчку в темах неформального общения занимает отпуск. Мы решили рассмотреть задачу планирования отпуска, как задачу оптимизации маршрута по выбранным достопримечательностям. Для этого воспользовались классической постановкой задачи коммивояжера.
Была у нас тут история, когда легкий перфекционизм помог привести в порядок конструкторскую документацию и регулярно экономить инженерам кучу дней на прохождение бюрократических процедур. В ее основе – создание системы управления расчетными данными и переход от трудночитаемых и трудноинтегрируемых отчетов Mathcad к гибкой связке Jupyter Notebook с Python и Teamcenter. Но основной рассказ будет про то, как преобразовывать и экспортировать математические формулы, таблицы и другие элементы из Jupyter в красивый и удобный вид.
В данной статье будет рассмотрено одно из решений обучающей задачи на платформе Kaggle по распознаванию рукописных цифр. Будут продемонстрированы несколько трюков, которые могут помочь читателю добиться высоких результатов в данном соревновании.
Расскажу, как я написал бота на Python, который находит дубли мемов в нашем мем-чате, и какие методы сравнения изображений для этого использовал.
Почти на всех собеседованиях задают вопросы про SOLID: что это такое, зачем нужен, как его применяет кандидат, как понимает принципы из него? Мы тоже спрашиваем кандидатов про SOLID.
В нашей команде в качестве системы управления тестированием программных продуктов используется Test IT. Система в целом нам нравится, претензий к функционалу почти совсем нет. Однако инструментарий Test IT не всегда позволяет настроить работу тестировщиков так, как удобно. Например, тот, кто с ней работал, знает, что при большом количестве тестов может быть затруднительным поддержание соответствия между автоматизированными и ручными тест-кейсами, если их слишком много.
А теперь о том, что происходило в последнее время на других ресурсах.