Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Библиотека ASE — это python-библиотека для проведения атомных манипуляций и вычислений. В данной статье мы будем создавать наночастицы с помощью этой библиотеки.
Я натренировал LSTM (Long short-term memory) рекуррентную нейронную сеть (RNN) на наборе данных, состоящих из ~100k рецептов, используя TensorFlow. В итоге нейронная сеть предложила мне приготовить "Сливочную соду с луком", "Клубничный суп из слоеного теста", "Чай со вкусом цукини" и "Лососевый мусс из говядины" .
Статьи на финансовые темы появляются на Хабре регулярно. Во многих из них в качестве источника первичных данных используется неофициально открытое API Yahoo finance. В этой статье я покажу три способа добыть данные (включая Yahoo) а также как напилить из них простое вэб-приложение в 20 строк и выдать его клиенту, не умеющему в CLI.
Оригинальная статья: Adam Johnson – How to Add Database Modifications Beyond Migrations to Your Django Project
В нескольких проектах Django, над которыми я работал, была необходимость в автоматическом внесение изменений в базу данных после проведенных миграций. Такая необходимость может возникнуть например для:
Сегодня попробуем создать простую музыку при помощи сетей LSTM.
Целю статьи есть указание возможностей сетей на практике, будет интересно какой результат получится у читателя, сможете оставить ссылки на свой варианты в комментариях.
Маленький рецепт, который будет полезен при создании динамических отчетов.
Достаточно часто встречается ситуация, когда размер и содержание отчетной формы будет зависеть от состава переданных на вход данных. Речь идет именно о story-telling отчете, а не о простом выводе таблицы. В этом случае, в зависимости от содержания входных данных, могут появляться или исчезать отдельные пункты, графики, таблицы, текст.
Недавно был опубликован анонс новой YOLOv5, которая идейно дает гораздо лучший процент распознавания на датасете COCO, чем предыдущие версии. Автор решил испробовать новую модель на задаче распознавания марок автомобилей.
Привет, Хаброжители! Мы издали книгу Максима Лапаня shmuma, это — подробное руководство по новейшим инструментам глубокого обучения с подкреплением и их ограничениям. Мы реализуем и проверим на практике методы кросс-энтропии и итерации по ценностям (Q-learning), а также градиенты по стратегиям.
Я решил написать эту серию статей, ибо считаю, что никто не должен сталкиваться с той стеной непонимания, с которой столкнулся когда-то я.
Ведь большинство статей написаны таки образом что, для того чтобы понять что-то в Функциональном Программировании (далее ФП), тебе надо уже знать многое в ФП. Эту статью я старался написать максимально просто — настолько понятно, чтобы её суть мог уловить мой племянник, школьник, который сейчас делает свои первые шаги в Python.
Как настроить SSL для проекта
Паттерны всегда меня очаровывали. Даже не важно какие. Я экспериментировал со многими: сети, листья и их переплетения, ветви, молнии, флокирование, очертания фигур, реки, скальный осадок, пейзажи, слизистая плесень, лишайники, взаимодействие и расплавление, клеточные автоматы, некоторые фракталы и другие штуки. Мне кажется, что самое приятное — это то, как сложные и затейливые результаты можно получить от набора простых правил.
В этой статье мы залезем под капот одному из линейных способов понижения размерности признакового пространства данных, а именно, подробно ознакомимся с математической стороной метода главных компонент (Principal Components Analysis, PCA).
Как может машина понимать смысл слов и понятий, и вообще, что значит — понимать? Понимаете ли вы, например, что такое спаржа? Если вы скажете мне, что спаржа — это (1) травянистое растение, (2) съедобный овощ, и (3) сельскохозяйственная культура, то, наверное, я останусь убеждён, что вы действительно знакомы со спаржей. Лингвисты называют такие более общие понятия гиперонимами, и они довольно полезны для ИИ. Например, зная, что я не люблю овощи, робот-официант не стал бы предлагать мне блюда из спаржи. Но чтобы использовать подобные знания, надо сначала откуда-то их добыть.
Эти инструменты упростят настройку и позволит автоматизировать рутинные операции. Они избавят разработчика от многих сложностей, которые мешают сосредоточиться на решении задач и комфортном написании кода. Есть много способов настройки окружения Python. В этом материале об одном из них. Но это, безусловно, не является единственным решением.
Умение модели распознавать намерения собеседника, то есть понимать зачем человек совершил то или иное действие, применимо в большом числе прикладных NLP-задач. К примеру, чат-ботам, голосовым помощникам и другим диалоговые системам это позволит эмоционально реагировать на высказывания собеседника, проявлять понимание, сочувствие и другие эмоции. Кроме того, задача распознавания намерения – это еще один шаг на пути к пониманию человеческой речи (human understanding).