Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Работая с несколькими словарями, иногда нужно сгруппировать их и управлять ими как единым словарём. В других ситуациях у вас есть словари, представляющие различные области видимости, контексты и, чтобы получить данные в определённом порядке или с определённым приоритетом, нужно работать с ними как с единым словарём.
Ансамблевые методы - это мощный инструмент для построения моделей машинного обучения. Команды, которые используют их в соревнованиях на kaggle, занимают победные места. Ансамбли позволяют увеличить точность модели до 90+, при этом они довольно просты в понимании.
Поэтому я решил осветить эту тему в данной статье и показать реализацию ансамблей с помощью scikit-learn.
Давайте разберемся на примере. Скажем, я хочу спрогнозировать зарплату специалиста по данным на основе количества лет опыта. Итак, моя целевая переменная (Y) — это зарплата, а независимая переменная (X) — опыт. У меня есть случайные данные по X и Y, и мы будем использовать линейную регрессию для прогнозирования заработной платы. Давайте использовать pandas и scikit-learn для загрузки данных и создания линейной модели.
Модуль http.cookies реализует парсер для cookie, по большей части совместимый с RFC 2109 — документом со стандартами работы с cookie и смежными вещами.
Многие знакомы с методологией Test-Driven Development и, в частности, Behavior-Driven Development. Этот подход к разработке и обеспечению качества ПО набрал большую популярность, поскольку позволяет выстроить четко установленное соответствие между бизнес-требованиями и технической реализацией продукта.
Сериализация и десериализация данных — это преобразование между необработанной структурой данных и экземплярами классов для их хранения и передачи. Например, преобразование объектов Python в JSON-представление. Мы рассмотрим две популярные Python-библиотеки Marshmallow и Pydantic, которые помогут нам справиться как с преобразованием, так и с валидацией данных. Сначала я представлю вам каждую библиотеку, используя небольшие примеры, а потом мы сравним их и разберем различия. Я также расскажу, чего вам стоит избегать при работе с обеими библиотеками.
Новый язык программирования от Open AI, рост популярности диффузионных моделей, чат-бот с памятью не как у золотой рыбки — об этом и многом другом в июльском выпуске.
Одним из недостатков гибких языков, таких как Python, является предположение, что если что-то работает, то скорее всего оно сделано правильно. Я хочу написать скромное руководство по эффективному использованию исключений в Python, правильной их обработке и логировании.
Этот пост предназначен в первую очередь для новичков в разработке, впервые столкнувшихся с необходимостью отправить post/get запросы к какому-нибудь API и проанализировать полученный в XML ответ. Постаралась собрать необходимы минимум в одном месте.
В статье поговорим как обучить несложную CNN сеть с помощью tensorflow, конвертировать готовое с помощью tensoflow-lite и перенести на мобильное устройство под управлением android. Описывается личный опыт автора, поэтому нет претензий на всеохватывающее руководство.
Изучение основ Python — прекрасный опыт. Но эйфория от изучения языка постепенно заменяется желанием создать что-то своими руками. И это нормально, но нужны идеи. Проблема здесь в том, что некоторые проекты либо слишком просты, либо слишком сложны для разработчика среднего уровня. Эта статья — помощь программисту уровня intermediate. Она предоставляет несколько идей проектов, которые могут стать интересным вызовом для вас.
В начале ноября на ютуб-канале Яндекс.Практикума прошли дебаты «Микросервисы, Монолит и Зомби». Ведущие дебатов — наставник курса «Мидл Python-разработчик» Руслан Юлдашев и техлид курса Савва Демиденко — разобрали архитектуры двух систем, прошлись по реальным задачам и ошибкам из своей рабочей практики и по очереди защищали свои позиции.
История о том, как суточный ETL-контур карабкался в реалтайм.В рамках AdTech-подразделения холдинга Rambler&Co выделено отдельное направление Usermodel, которое занимается анализом и сегментацией аудитории, а также повышением конверсий на площадках.
Генеративно-состязательные сети (Generative Adversarial Networks — GAN), предложенные Goodfellow и др. в 2014 году, произвели революцию в области создания изображений в компьютерном зрении — никто не мог поверить, что эти потрясающие живые изображения на самом деле создаются машинами с нуля. И даже больше — люди раньше думали, что задача генерации невозможна, и были поражены мощью GAN, потому что традиционно в этой области просто не существует каких-либо эталонных данных, с которыми мы могли бы сравнить наши сгенерированные изображения.
В этой статье представлена простая идея, лежащая в основе создания GAN, за которой следует реализация сверточной GAN с помощью PyTorch и процедура ее обучения.