Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В построении ML-моделей Python сегодня занимает лидирующее положение и пользуется широкой популярностью сообщества Data Science специалистов
Также, как и большинство разработчиков, Python привлекает нас своей простотой и лаконичным синтаксисом. Мы используем его для решения задач машинного обучения при помощи искусственных нейронных сетей. Однако, на практике, язык продуктовой разработки не всегда Python и это требует от нас решения дополнительных интеграционных задач.
В этой статье расскажу о тех решениях, к которым мы пришли, когда нам потребовалось связать Keras-модель языка Python с Java.
Эта отрывок из бесплатной книги “Парадигмы алгоритмического проектирования (жадные алгоритмы, разделяй и властвуй и динамическое программирование)”
В сентябре этого (2019) года прошли выборы Губернатора Санкт-Петербурга. Все данные о голосовании находятся в открытом доступе на сайте избирательной комиссии, мы не будем ничего ломать, а просто визуализируем информацию с этого сайта www.st-petersburg.vybory.izbirkom.ru в нужном для нас виде, проведем совсем несложный анализ и определим некоторые «волшебные» закономерности.
Каждый экземпляр класса в CPython, созданный при помощи синтаксической конструкции class, участвует в механизме циклической сборки мусора. Это увеличивает след в памяти каждого экземпляра и может создавать проблемы с памятью в высоконагруженных системах.
Нельзя ли обойтись в случае необходимости одним базовым механизмом подсчета ссылок?
Перевод оригинальной статьи: James TimminsWhen to Use a List Comprehension in Python
Я начинаю серию статей, посвященных разработке сайтов на Django. Информация для этих статей получена из собственного опыта (полтора года коммерческой разработки на Django, несколько мелких фриланс-проектов, часть проекта pythonworld.ru написана на Django).
Это первая часть из серии обучающих статей о создании смарт-контрактов на Python в блокчейн сети Ontology при помощи инструмента разработки смарт-контрактов SmartX.
В этой статье мы начнём знакомство с API смарт-контракта Ontology. API смарт-контракта Ontology разделен на 7 модулей
Сегодня мы публикуем второй материал из цикла, посвящённого использованию Python в Instagram. В прошлый раз речь шла проверке типов серверного кода Instagram. Сервер представляет собой монолит, написанный на Python. Он состоит из нескольких миллионов строк кода и имеет несколько тысяч конечных точек Django.
Мы уже рассказывали о платформе LEGO MINDSTORMS Education EV3. Основные задачи этой платформы — обучение на практических примерах, развитие навыков STEAM и формирование инженерного мышления. В ней можно проводить лабораторные работы по изучению механики и динамики. Лабораторные стенды из кубиков LEGO и утилиты по регистрации и обработке данных делают опыты еще интереснее и нагляднее и помогают детям лучше понять физику. Например, школьники могут собрать данные о температуре плавления и с помощью приложения систематизировать их и представить в виде графика. Но это только начало: сегодня мы расскажем, как дополнить этот набор средой программирования MicroPython и использовать его для обучения робототехнике.
В предыдущей статье я рассказал про нашу систему поиска похожих заявок. После ее запуска мы стали получать первые отзывы. Какие-то рекомендации аналитикам нравились и были полезны, какие-то — нет.
Для того, чтобы двигаться дальше и находить более качественные модели, необходимо было сначала оценить работу текущей модели. Также необходимо было выбрать критерии, по которым две модели можно было бы сравнить между собой.
Сегодня публикуем вторую часть перевода материала, посвящённого статическому анализу больших объёмов серверного Python-кода в Instagram.
В России одна известная организация под названием ВЦИОМ проводила социологическое исследование, на котором гражданам предлагали ответить на вопрос: «Согласны ли вы со следующим утверждением: Солнце вращается вокруг Земли?» Данные этого опроса многократно перепечатываются в СМИ, и на различных сетевых ресурсах в комментариях часто ссылаются на него при обсуждении различных общественно-политических проблем.
Мы просмотрели и сравнили 10 000 open source библиотек для Python и выбрали 34 самые полезные. Мы сгруппировали эти библиотеки в 8 категорий.
Серверный код в Instagram пишут исключительно на Python. Ну, в основном это именно так. Мы используем немного Cython, а в состав зависимостей входит немало C++-кода, с которым можно работать из Python как с C-расширениями.
В этой статье я не буду рассказывать о новых фичах генератора парсера — я достаточно описал его в предыдущих частях. Вместо этого хочу рассказать что я делал на Core Developer Sprint на прошлой неделе, прежде чем всё сотрётся из моей памяти. Хотя большая часть материала так или иначе всё равно касается PEG. Так что мне придётся показать некоторый код, который задаёт направление в реализации PEG-парсера для Python 3.9.