Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Как и было обещано в предыдущей статье, сегодня мы продолжим разговор о методологиях, применяемых в A/B-тестировании и рассмотрим методы оценки результатов множественных экспериментов. Мы увидим, что методологии довольно просты, и математическая статистика не так страшна, а первооснова всего — аналитическое мышление и здравый смысл. Однако предварительно хотелось бы сказать пару слов о том, какие же бизнес-задачи помогают решать строгие математические методы, нужны ли они Вам на данном этапе развития Вашей компании и какие pros and cons существуют в Большой аналитике.
В школьные годы у меня был одноклассник, который мог послушать, как работает машина во дворе, и с серьезным лицом вынести вердикт: все в порядке, или что-то сломалось, и нужно срочно бежать за новыми деталями/маслом/инструментами! Я, как абсолютный чайник в автомобильном деле, всегда слышал обычное дребезжание очередной двенашки, никаких отличий не замечая и просто молча поражаясь его слуху и скилам.
Как выдумаете, сложно ли написать на Python собственного чатбота, способного поддержать беседу? Оказалось, очень легко, если найти хороший набор данных. Причём это можно сделать даже без нейросетей, хотя немного математической магии всё-таки понадобится.
Идти будем маленькими шагами: сначала вспомним, как загружать данные в Python, затем научимся считать слова, постепенно подключим линейную алгебру и теорвер, и под конец сделаем из получившегося болтательного алгоритма бота для Телеграм.
Этот туториал подойдёт тем, кто уже немножко трогал пальцем Python, но не особо знаком с машинным обучением. Я намеренно не пользовался никакими nlp-шными библиотеками, чтобы показать, что нечто работающее можно собрать и на голом sklearn.
Перевод статьи Chad Hansen : Understanding the Python Traceback
Рассматривая тему пространственного разнесения, вскользь мы уже коснулись и вопросов замираний в каналах связи, и того, почему такие замирания возникают. Сегодня предлагаю поговорить об этой теме чуть более подробно.
В Python есть 3 способа форматировать строки, и один из них лучше других. Но не будем забегать наперед — о каком именно форматировании вообще речь? Каждый раз когда мы хотим поприветствовать пользователя по имени нам нужно вставить строку с именем в строку-шаблон. Большинство полезных записей в логах так же содержат значения переменных
Сегодня я хочу вам рассказать о достаточно новом open-source инструменте для автоматизированного тестирования под названием Airtest. В дальнейшем я сделаю ещё несколько статей с подробным рассказом об отдельных элементах данного инструментария и как с ними работать, а сейчас у меня цель познакомить вас с ним и дать общее представление о нем.
Требования функциональности и структурированности баз данных (БД), наиболее полно реализованные в реляционных системах, сейчас находятся под давлением новых требований.
Python — это язык программирования, который отлично подходит для разработки самостоятельных скриптов. Для того чтобы добиться с помощью подобного скрипта желаемого результата, нужно написать несколько десятков или сотен строк кода. А после того, как дело сделано, можно просто забыть о написанном коде и перейти к решению следующей задачи.
Если, скажем, через полгода после того, как был написан некий «одноразовый» скрипт, кто-то спросит его автора о том, почему этот скрипт даёт сбои, об этом может не знать и автор скрипта. Происходит подобное из-за того, что к такому скрипту не была написана документация, из-за использования параметров, жёстко заданных в коде, из-за того, что скрипт ничего не логирует в ходе работы, и из-за отсутствия тестов, которые позволили бы быстро понять причину проблемы.
Последний год я работал с graphene-python + django ORM и за это время я пытался создать какой-то инструмент, чтобы сделать работу с graphene удобнее. В результате у меня получилась небольшая кодовая база graphene-framework и набор некоторых правил, чем я бы и хотел поделиться.
Эта статья — своеобразный мастер-класс «DVC для автоматизации ML экспериментов и версионирования данных», который прошел 18 июня на митапе ML REPA (Machine Learning REPA:
Reproducibility, Experiments and Pipelines Automation) на площадке нашего банка.
Тут я расскажу об особенностях внутренней работы DVC и способах применения его в проектах.
Я занимаюсь созданием веб-приложений на Django. В основном, это SaaS сервисы для бизнеса. Во всех этих приложениях есть необходимость в асинхронных задачах. Для их реализации использую Celery. В статье расскажу о ситуациях, в которых применяю Celery, с примерами кода.