Собрали в одном месте самые важные ссылки
читайте нас в Twitter
В далеком 2003 году Intel выпустил новый процессор Pentium 4 “HT”. Этот процессор разгонялся до 3ГГц и поддерживал технологию гиперпоточности.
Помимо выпуска многоядерных процессоров для широкой пользовательской аудитории в 2006 году произошло кое-что еще. Python 2.5 наконец увидел свет! Он поставлялся уже с бета версией ключевого слова with, которое вы все знаете и любите.
В этой статье представлена реализация на Python алгоритма распознавания источников освещения на картах окружения (LDR или HDR) при помощи равнопромежуточной проекции (equirectangular projection). Однако после внесения незначительных изменений её также можно использовать с простыми фоновыми изображениями или кубическими картами. Примеры возможного применения алгоритма: программы трассировки лучей, в которых требуется распознавать первичные источники освещения для испускания из них лучей; в растеризованных рендерерах он может применяться для отбрасывания теней, использующих карту окружения; кроме того, алгоритм также можно применять в программах устранения засветов, например в AR.
Я захотел написать десктопное приложение, аля простой «Калькулятор». Мой выбор пал на Pyside2. Я не претендую на идеальный код или урок. Просто есть желание поделиться опытом, если кто-то, как и я, хочет начать шарить в Python. Если кому-то помогу — результата я достиг.
Недавно я писал про api клиент для Jira. Разбираться с ним я начал, когда возникла необходимость автоматизировать формирование отчета по времени(отчеты нужны заказчику). В итоге получися небольшой инструмент который позволяет быстро и легко вытаскивать необходимые данные.
Лето в полном разгаре, и если вы планируете быть в Одессе 5-го июля, приглашаю вас на ODS митап и дата-бар, который организовывает одесская ODS.ai команда. Напоминаю, что у дайджеста есть свой Telegram-канал и страницы в соцсетях (Facebook, Twitter, LinkedIn, Medium), где я ежедневно публикую ссылки на полезные материалы. Присоединяйтесь!
Иногда возникает необходимость разделить несколько пакетов, лежащих в одном пространстве имен по разным физическим путям. Например, если вы хотите иметь возможность передавать разную компоновку плагинов, имея возможность в последствии добавлять их, не контролируя их расположение, и, при этом, обращаться к ним через один namespace.
Эта шпаргалка, которая подойдет скорее для новичков, посвящена пространствам имен Python.
Давайте рассмотрим, как это можно сделать в разных версиях Python, так как хотя Python2 и перестает скоро поддерживаться, многие из нас как раз сейчас меж двух огней, и это как раз один из важных нюансов при переходе.
Одним из первых радиотелескоп построил американец Грот Рёбер в 1937 году. Радиотелескоп представлял собой жестяное зеркало диаметром 9.5 м, установленное на деревянной раме
На картинке вы видите обычную таблицу умножения, которая, думаю, всем хорошо знакома.
Ничего особенного в ней нет, кроме того, что весь алгоритм ее построения сжат до одной стандартной Python’овской строки в 79 символов (см. PEP8). Кому интересно добро пожаловать под кат.
В прошлой главе мы видели, как нейросети могут самостоятельно обучаться весам и смещениям с использованием алгоритма градиентного спуска. Однако в нашем объяснении имелся пробел: мы не обсуждали подсчёт градиента функции стоимости. А это приличный пробел! В этой главе я расскажу быстрый алгоритм для вычисления подобных градиентов, известный, как обратное распространение.
Мы рады сообщить, что расширение Python для Visual Studio Code от июня 2019 года уже доступно. Вы можете загрузить расширение Python из Marketplaceили установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, просто перезапустив Visual Studio Code. Узнать больше о поддержке Python в Visual Studio Code можно в документации.
В этом выпуске мы внесли улучшения, которые перечислены в нашем журнале изменений, решив в общей сложности 70 проблем, включая связанные со средством просмотра графиков с окном Python Interactive и параллельными тестами с pytest. Обо всех изменениях читайте под катом.
Этот высокоуровневый урок рассчитан на новичков в машинном обучении и искусственном интеллекте. Для того, чтобы успешно создать нейронную сеть, необходимо: