Собрали в одном месте самые важные ссылки
читайте авторский блог
Недавно мне на глаза попался датасет на Kaggle с данными о 45 тысячах фильмов с Full MovieLens Dataset. Данные содержали не только информацию об актерах, съемочной команде, сюжете и т.п., но и оценки, выставленные фильмам пользователями ресурса (26 миллионов оценок от 270 тыс.пользователей).
Стандартная задача для таких данных — это рекомендательная система. Но мне в голову почему-то пришло прогнозирование рейтинга фильма на основе информации, доступной до его выхода. Я не знаток кинематографа, и поэтому обычно ориентируюсь на рецензии, выбирая что посмотреть из новинок. Но ведь рецензенты тоже несколько biased — они-то смотрят гораздо больше разных фильмов, чем рядовой зритель. Поэтому спрогнозировать, как оценит фильм обычная публика, показалось занятным.
Jupyter Notebook – невероятно мощный инструмент для интерактивной разработки и представления проектов в области наук о данных.
На просторах интернета до сих пор остаются актуальными капчи, которые в качестве опции предлагают прослушать текст с картинки, нажав на соответствующую кнопку. Если кому-то знакома картинка ниже и/или есть интерес как ее обойти, используя систему оффлайн распознавания звука, предлагается к прочтению.
В нём есть данные о росте и весе 10 000 мужчин и женщин. Никакого описания. Ничего «лишнего». Только рост, вес и метка пола. Эта таинственная простота мне понравилась.
Решил несколько дополнить статью C/C++ из Python.
Передача стандартных типов, таких как int, bool, float и так далее довольно проста, но мало необходима. С такими данными быстро справится и сам python, и врядли у кого-то возникнет необходимость вынесения части такого кода в библиотеку C/C++.
А вот передача больших массивов данных, или еще лучше двумерных массивов данных, или даже двумерных массивов объектов.
После экспериментов с многим известной базой из 60000 рукописных цифр MNIST возник логичный вопрос, есть ли что-то похожее, но с поддержкой не только цифр, но и букв. Как оказалось, есть, и называется такая база, как можно догадаться, Extended MNIST (EMNIST).
Если кому интересно, как с помощью этой базы можно сделать несложную распознавалку текста, добро пожаловать под кат.
После появления Bot API у мессенджера ТамТам, я как истинный, а значит ленивый программист, создал 2 библиотеки Python для работы с ним:
Так появился некий ТамТам Python SDK.
Простота и легкость в освоении данного языка может ввести разработчиков в заблуждение (особенно тех, кто еще только начинает изучать Python), так что можно упустить из виду некоторые важные тонкости и недооценить силу разнообразия возможных решений с помощью Python.
Имея это в виду, в этой статье представлен «топ-10» тонких, трудных для обнаружения ошибок, которые могут допустить даже продвинутые разработчики Python.
Про то как вызывать Python из C написал в прошлой статье, теперь поговорим как делать наоборот и вызывать C/C++ из Python. Раз начал писать об этом, то раскроем всю тему до конца. Тем более, что ни чего сложного здесь нет тоже.
В предыдущей статье я кратко описал свою прошивку для ККТ ШТРИХ-ФР-К, которая позволяет управлять термоголовкой, движками и соответственно выводить на печать все что угодно. В этой части я покажу как написать софт, который будет общаться с кассой и форматировать картинку для печати.
Сравниение различных инструментов (RabbitMQ, Crossbar.io, Nats.io, Nginx и др.) для организации RPC между микросервисами.
Новая подборка советов про Python и программирование из авторского канала @pythonetc.