Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Один преподаватель как-то сказал мне, что если поискать аналог программиста в мире книг, то окажется, что программисты похожи не на учебники, а на оглавления учебников: они не помнят всего, но знают, как быстро найти то, что им нужно. Возможность быстро находить описания функций позволяет программистам продуктивно работать, не теряя состояния потока. Поэтому я и создал представленную здесь шпаргалку по pandas и включил в неё то, чем пользуюсь каждый день, создавая веб-приложения и модели машинного обучения.
Одна из проблем обучения нейронных сетей — переобучение. Это когда алгоритм научился хорошо работать с данными, которые он видел, а на других он справляется хуже. В статье мы рассказываем, как попытались решить эту проблему, совместив обучение градиентным спуском и эволюционным подходом.
В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание. В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.
Привет от ODS. Мы откликнулись на идею tutu.ru поработать с их датасетом пассажиропотока РФ. И если в посте Milfgard огромная таблица выводов и научпоп, то мы хотим рассказать что под капотом.
Что, опять очередной пост про COVID-19? Да, но нет. Нам это было интересно именно с точки зрения математических методов и работы с интересным набором данных.
Скользящее окно (Moving Windows) В заголовке я привел дословный перевод. Если кто меня поправит, и другой термин более применим — то спасибо. Смысл скользящего окна– с каждым новым значением функция пересчитывается за заданный период времени. Этих функций большое количество. Для примера: rolling.mean(), rolling.std(), которые чаще всего и используют при анализе движения акций. rolling.mean() — это обычная скользящая средняя, которая сглаживает краткосрочные колебания и позволяет визуализировать общую тенденцию.
Давайте представим, что нам нужно запустить футбольный мяч на орбиту Земли. Никакие ракеты не нужны! Хватит горы, высотой 100 километров и недюжинной силы. Но насколько сильно нужно пнуть мяч, чтобы он никогда больше не вернулся на Землю? Как отправить мяч в путешествие к звёздам, имея только грубую силу и знание небесной механики?
Python, хоть и мощный, но всего лишь инструмент, который позволяет писать выразительный самодокументируемый код, но не гарантирует этого, как не гарантирует этого и соблюдение PEP8. Когда наш, казалось бы, простой интернет-магазин на Django начинает приносить деньги и, как следствие, накачиваться фичами, в один прекрасный момент мы понимаем, что он не такой уж и простой, а внесение даже элементарных изменений требует все больших и больших усилий, а главное, что эта тенденция все нарастает. Что случилось, и когда все пошло не так?
Audio
Сейчас программирование все глубже и глубже проникает во все сферы жизни. А возможно это стало благодаря очень популярному сейчас python’у. Если еще лет 5 назад для анализа данных приходилось использовать целый пакет различных инструментов: C# для выгрузки (или ручки), Excel, MatLab, SQL, и постоянно “прыгать” туда сюда вычищая, сверяя и выверяя данные. То сейчас python, благодаря огромному количеству прекрасных библиотек и модулей, в первом приближении благополучно заменяет все эти инструменты, а в связке с SQL так вообще “горы свернуть можно”.
Будучи одним из самых популярных языков 21-го века, Python, безусловно, обладает множеством интересных функций, которые стоит изучить подробно. Три из них будут рассмотрены сегодня, каждая — теоретически, а потом и на практических примерах.
В процессе подготовки к курсу «Основы компиляторов» для студентов 4-го курса я изучал различные эзотерические языки программирования. Вот хорошая статья на эту тему. В статье самым интересным мне показался язык Befunge (Крис Пресс, 1993 год), особо отмечу три его особенности
В этой статье я покажу как решить одну из проблем, возникающих при использовании распределенных очередей задач — регулирование пропускной способности очереди, или же, более простым языком, настройка ее rate limit'a. В качестве примера я возьму python и свою любимую связку Celery+RabbitMQ, хотя алгоритм, который я использую, никак не зависит от этих инструментов и может быть реализован на любом другом стэке.
Репозиторий моделей Open Model Zoo библиотеки OpenVINO содержит много самых разных глубоких нейронных сетей из области компьютерного зрения (и не только). Но нам пока не встретилось GAN моделей, которые генерировали бы новые данные из шума. В этой статье мы создадим такую модель в Keras и запустим ее в OpenVINO.