Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Это двадцать вторая часть Мега-Учебника, в которой я расскажу вам, как создавать фоновые задания, которые работают независимо от веб-сервера.
Если хорошо поискать, можно обнаружить довольно много полезной, приличного качества, государственной информации. Но к сожалению, это все еще не: ЕГЭ и образование, погода, картография, данные о преступлениях… и ДТП.
Поэтому у меня как бы две жизни: в одной помогаю чиновникам открывать данные, которые просят люди или организации, а в другой — пишу парсеры, которые превращают общедоступные базы особо «упрямых» госорганов в открытые данные и учу этому других, в надежде, что таких проектов станет много, государство смирится с неизбежным и все выложит в удобном нам виде.
Эта статья станет первым мануалом в серии «как получать машиночитаемые данные с госсайтов». Итак, сегодня — про статистику ДТП, а раз государство нам ее не дает, мы научимся забирать ее самостоятельно. По традиции, код и данные — прилагаются.
Очередной раз хочется поделиться своим опытом и результатами экспериментов в области промышленной автоматизации.
В настоящий момент мы немного поменяли концепцию построения системы опроса устройств с использованием языка python.
Зимой 2012 года Netflix пережил длительный сбой, уйдя в отключку на семь часов из-за проблем с сервисом AWS Elastic Load Balancer в регионе US-East (Netflix работает на AWS — у нас нет собственных дата-центров. Всё ваше взаимодействие с Netflix происходит через AWS, кроме самого потокового видео. Как только вы нажмете Play, начинает загружаться видеопоток из нашей собственной сети CDN). Во время сбоя ни один пакет из региона US-East не доходил до наших серверов.
На прошедших выходных (20-22 апреля) в офисе Mail.ru Group прошел студенческий хакатон по машинному обучению. Хакатон объединил студентов разных ВУЗов, разных курсов и, что самое любопытное, разных направлений: от программистов до безопасников.
Это двадцать первая часть Мега-Учебника Flask, в которой я добавлю функцию личных сообщений, а также уведомления пользователей, которые появляются на панели навигации без необходимости обновления страницы.
Hypothesis пытается использовать приемлемые значения в умолчаниях для своего поведения, но иногда этого недостаточно, и вам требуется настроить его.
Рекуррентные слои были изобретены еще в 80х Джоном Хопфилдом. Они легли в основу разработанных им искусственных ассоциативных нейронных сетей (сетей Хопфилда). Сегодня рекуррентные сети получили большое распространение в задачах обработки последовательностей: естественных языков, речи, музыки, видеоряда и тд.
В рамках задачи по Hierarchy reinforcement learning я решил прогнозировать не одно действие агента, а несколько, используя для этого уже пред обученную сеть способную предсказать последовательность действий. В данной статье я покажу как реализовать “sequence to sequence” алгоритм для обучения этой самой сети а в последующей, постараюсь рассказать, как использовать ее в Q-learning обучении.