Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В предыдущей статье автора описан путь создания своего spam-фильтра. В этой рассказывается об опыте использования разработки
Одно из распространенных применений Python — небольшие скрипты для обработки данных (например, каких-нибудь логов). Мне часто приходилось заниматься такими задачами, скрипты обычно были написаны наспех. Вкупе с моим слабым знанием алгоритмов это приводило к тому, что код получался далеко не оптимальным. Это меня ничуть ни расстраивало: лишняя минута выполнения не сделает погоды.
Ситуация немного изменилась, когда объем данных для обработки вырос. И после того, как время выполнения очередного скрипта перевалило за сутки, я решил уделить немного времени оптимизации — все-таки хотелось бы получить результат до того, как он потеряет актуальность. В рамках этой статьи я не планирую говорить о профилировании, а затрону тему компиляции Python-кода. При этом обозначу условие: варианты оптимизации не должны быть требовательными к времени разработчика, а, напротив, быть дружественными к «пыщ-пыщ и в продакшен».
Для экспорта слов в Lingualeo.com есть несколько решений:
Минусы этих способов в том, что вносить слова можно только по одному. Нам необходима реализация, которая позволит добавлять несколько слов за раз.
В исследовательском проекте мне потребовался прототип медицинского браслета. Устройство должно было периодически измерять пульс, предупреждая об этом пациента, и отправлять результаты вместе с уровнем заряда батареи в облачный сервис. Таким устройством вполне мог стать и фитнес-браслет со стационарным ретранслятором вместо смартфона. Поэтому, прежде чем попытаться собрать прототип своими руками, я решил поэкспериментировать с чем-нибудь готовым. Так у меня появился новый Xiaomi mi band 1S Pulse (обзор на Geektimes) с оптическим датчиком частоты сердечного ритма.
Решил я познакомится с такой интересной для меня областью, как Machine learning. После непродолжительных поисков я обнаружил достаточно популярный курс Стэнфордского университета Machine learning. В нем рассказываются основы и дается широкое представление о machine learning, datamining, and statistical pattern recognition. Был для меня в этом курсе небольшой минус как Python программиста- домашние задания надо было выполнять на Octave\Matlab. В итоге я не пожалел, что получил представления о новом языке программирования, но как учебный пример для более тесного знакомства с соответствующими библиотеками решил переписать домашние задания на Python. То что получилось лежит на GitHub тут.
Модуль collections содержит разные типы коллекций по-мимо встроенных list, dict, tuple
Статья описывает способы ускорить сериализацию объектов - уменьшить вариативность данных, убрать валидацию, использовать С библиотеки.
Статья описывает прогресс в развитии Nuitka за 2015 год. Описаны и планы на будущее, среди самого интересного - план реализовать вывод типов.
Известный британский трейдер и разработчик Майк Халлс-Мур написал в своем блоге статью о том, как создать объектно-ориентированную систему бэктестинга финансовых стратегий торговли на бирже. Мы представляем вашему вниманию главные мысли этого материала.
Статья описывает создание спам фильтра в 100 строк на Python
Статья вводная, описывает ситуации, когда необходимо считать среднюю с учетом веса. Рассказно как использовать ее в Pandas
После непродолжительной, но весьма кровавой войны мне все-таки удалось откомпилировать и собрать TensorFlow для GPU с CUDA capability=3.0. Теперь можно погрузиться в него основательно, потому что машинное обучение с GPU — это быстро, легко и приятно, а без GPU — порой лишь огромная потеря времени. Попробуем запрограммировать самую простейшую логистическую регрессию.