Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Статья описывает как реализовать конвейер вычислений. На подобии этого:
Для всех объектов в программе Python ведется подсчет ссылок. Счетчик ссылок на объект увеличивается всякий раз, когда ссылка на объект записывается в новую переменную или когда объект помещается в контейнер, такой как список, кортеж или словарь, как показано ниже...
Все началось с того, что Минкомсвязи разрешило использовать портал госуслуг для идентификации и аутентификации пользователей на негосударственных веб-узлах. Это реализуется с помощью службы ЕСИА (Единая Система Идентификации и Аутентификации — esia.gosuslugi.ru). Заказчик нашего проекта входил в число первых 5-ти участников, которые подали заявки на интеграцию с ЕСИА, что выразилось для нас задачей эту интеграцию поддержать. В свободном доступе мы не нашли открытого бесплатного решения подходящего для своего стека технологий, поэтому после разработки, с благословления заказчика, решили поделиться собственным (BSD license). Итак, представляем вам проект esia-connector, написан на Python 3, использует утилиту openssl, проверялся в работе только в Debian-based системах. Пакет: pypi.python.org/pypi/esia-connector Проект: github.com/saprun/esia-connector
Статья описывает один из способов оптимизации модуля Django-rest-framework
Это пошаговый туториал о том, как начать использовать docker с django
Это статья-введение в behaviour-driven development (BDD) на примере REST Python-Flask приложения
Статья рассказывает как PyCharm поддерживает type hinting
Byterun это интерпретатор Python написанный на Python. Статья расскажет о структуре интерпретаторе. Эта статья сможет помочь погрузиться в тему интерпретаторов
Сегодня многие системы и языки программирования позиционируются как «мощные». Нельзя сказать, что это плохо. Почти каждый из нас считает это положительным свойством. Но в этом посте я хочу донести такую точку зрения, что во многих случаях нам нужныменее мощные языки программирования и системы. Но прежде чем продолжить, уточню: здесь будет мало оригинальных, моих собственных размышлений. Я буду излагать ход мыслей, возникший по прочтении книги Дугласа Хофштадтера «Гёдель, Эшер, Бах», которая помогла мне собрать воедино разрозненные идеи и мысли, бродившие в голове. Также большое влияние на нижеизложенный материал оказали пост Филипа Вадлера и видеозапись с конференции Scala. Ключевая мысль такова:
Каждое увеличение выразительности возлагает дополнительную нагрузку на всех, кто хочет понять сообщение.
И я хочу лишь проиллюстрировать эту точку зрения с помощью примеров, которые будут ближе и понятнее сообществу программистов на Python.
В одной из своих статей я рассказывал об асинхронной работе с Tarantool на Python. В данной статье продолжу эту тему, но внимание хочу уделить обработке информации через очереди на Tarantool. Мои коллеги опубликовали несколько статей о пользе очередей (Инфраструктура обработки очередей в социальной сети Мой Мир и Push-уведомления в REST API на примере системы Таргет Mail.Ru). Хочу дополнить информацию об очередях на примере решений наших задач, а также рассказать о работе с Tarantool Queue на Python и asyncio. Почему мы выбираем именно Tarantool, а не Redis или RabbitMQ?
Лично я лучше всего обучаюсь при помощи небольшого работающего кода, с которым могу поиграться. В этом пособии мы научимся алгоритму обратного распространения ошибок на примере небольшой нейронной сети, реализованной на Python.
Дайте код!
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))
l2_delta = (y - l2)*(l2*(1-l2))
l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
syn1 += l1.T.dot(l2_delta)
syn0 += X.T.dot(l1_delta)
Продолжаю кофейную тематику, которую я начал еще на geektimes: Здравствуйте, я Meklon и я кофеин-зависимый. Сегодня мы будем творить непотребства с софтом для биоинженерных задач — CellProfiler. Нормальные люди им считают клетки, плазмиды, экспрессию белка и прочие нужные вещи. Мы долбанутые, поэтому будем проводить гранулометрический анализ помола по микрофотографии, бить кофе статическим электричеством и думать, как прицепить к этому безобразию фен. Ну и конечно нам потребуется скотч для получения графена картины распределения частиц.
В целом, компьютерный анализ изображения — штука гибкая и может применяться в совершенно странных задачах. Заодно проверим, можно ли заменить турку колбой с магнитной мешалкой. В конце концов, главный принцип выживания в лаборатории — «Нет кофе — нет работы») Под катом очень много фотографий, но я постарался их ужать до приличных размеров.
Статья описывает как воспользоваться датчиком влажности и получить с него данные через Интернет.
По ссылке вы найдете готовый код для конвертирования XLSX в PDF
В статье вы найдете подробное сравнение JSON парсеров. Будут рассматрваться такие параметры как производительность и потребление памяти.
Список JSON библиотек:
cjson, rapidjson, yajl, ujson, jsonlib2, jsonlib, simplejson, json.