Собрали в одном месте самые важные ссылки
консультируем про IT, Python
A 40-minute approachable video to new changes coming in Python 3.12.
Многие из вас слышали, что Python 3.11 значительно быстрее 3.10. Как нам это удалось? И как мы делаем 3.12 и последующие выпуски ещё быстрее? В своём выступлении я обзорно расскажу, какие техники мы используем для ускорения CPython. Постараюсь не использовать сложную терминологию и обойтись диаграммами, простыми примерами и математикой из средней школы. Наконец, я попытаюсь спрогнозировать на сколько станут быстрее последующие выпуски CPython, и как далеко можно вообще зайти в деле ускорения Питона.
Python 3.11 вышел в свет 24 октября 2022 года, получив новый «специализирующий адаптивный интерпретатор». Я хочу рассказать вам о том, как ваш код начал оптимизировать сам себя по ходу исполнения, используя разные техники, позволяя в среднем достичь 25% ускорения. Расскажу о сложностях, с которыми можно столкнуться в ходе создания оптимизаций для динамических языков. А также о том, что будет в Python 3.12 и дальше.
Задача поиска людей по фото — это вычислительно сложная задача нечеткого поиска. Для решения этой проблемы используются биометрические вектора, которые извлекаются из фотографий с помощью нейронных сетей. Однако, даже два вектора, полученные из разных фото одного человека, не совпадают на 100%. Поэтому, в отличие от поиска на точное совпадение, эта задача на порядки сложнее. В докладе будет рассказано о том, как мы решили эту задачу и какие сложности пришлось преодолеть, учитывая жесткие требования по скорости ответа при высокой интенсивности запросов: - Оптимизация поиска похожих биометрических векторов: сравнение инструментов и выбор наилучшего подхода. - Как быстро загрузить базу клиентов в память модуля поиска: без C++ и перерасхода памяти. - Как можно искать ещё быстрее? Индексирование базы векторов: подходы и методы для многократного ускорения поиска. Доклад будет интересен не только тем, кто сталкивается с задачами нечеткого поиска по данным с большим количеством категорий, но и для разработчиков, которые заинтересованы в понимании особенностей работы Python при обработке больших объемов данных. Слайды: https://moscowpython.ru/meetup/82/client-search/
Необычный case, когда твоя компания разрабатывает операционную систему и пакеты можно устанавливать только из репозитория. Никакого pip, poetry и пр. Как же сделать коробочку со всем необходимым (python, библиотеки и прочие зависимости и запустить сервис в systemd прямо из неё. Только pyenv, virtualenv и bash. Слайды: https://moscowpython.ru/meetup/82/virtual-env/
Разберем что такое большие языковые модели, рассмотрим принцип генерации текста, и напишем свой генератор текста на Python, используя цепи Маркова.
Python и Golang в чем-то похожи — легкий синтаксис, много библиотек, простота прототипирования. Но в последние годы у Go появляется ряд преимуществ, которые сподвигли меня и моих коллег перейти на этот язык. Я расскажу, что выиграет разработчик и бизнес, выбрав Go. И какие проблемы вы получите взамен.
Кажется, мы уже все привыкли работать с контейнерами, но до сих пор у текущих имплементаций контейнерных рантаймов был фатальный недостаток — они написаны не на Python. Попробуем это исправить?
Как добавить в существующую систему логирования Django поддержку syslog. Форматы, как их готовить и как документировать этот хаос. И кстати, зачем?
Расскажем про принцип Dependency Injection (DI). На конкретных примерах покажем как правильно его использовать в ваших сервисах и какие выгоды он принесёт.
Мы переписали бекенд с FastAPI на Django. Расскажу, почему и как нам пришло это в голову, и что из этого получилось.
Улучшаем себе DX при помощи консольных инструментов Многие программисты до сих пор считают, что терминал — это инструмент бородатых админов из 80-х годов. На самом деле это не так — каждый год в сообществе появляются новые консольные инструменты, которые улучшают ежедневную рутину программиста: упрощают работу с гитхабом, поиск файлов, переход между проектами. Есть инструменты с говорящими названиями, к примеру tldr ускоряет чтение документации, а fuck — исправляет ошибку в последней введённой команде. На докладе я сделаю краткий обзор современных консольных инструментов, и расскажу о том, что ещё можно делать в терминале — к примеру редактировать текст быстрее, чем в GUI.
Как установить лицензионную защиту кода на Python и обезопасить данные с помощью HASP? Как подружить C/C++ и Python с помощью Cython? Как передавая ПО на Python не отдавать исходники? Как использовать зашифрованные модели из Python?
Каждый питонщик желает знать, где сидит setup.py. Но в части случаев он может оказаться переусложнённым, или наоборот, слишком простым. Какие ещё системы сборки есть для Python, будет рассказано в этом докладе.
Обсудим опыт жизни за рубежом и адаптацию в зарубежной компании, развитие, поиск наставника и всем ли нужно становиться тимлидами.
На мастер-классе вы будете первыми, кто воспользуется нашей oпенсорсной генеративной моделью. Обсудим, что такое языковая модель и как ее использовать для conversational AI. И на практике: Поборемся с основной проблемой языковых моделей, обученных на корпусе из Интернета — генерация токсичных ответов. Повысим качество ответов болталки с помощью классификаторов. Улучшим качество с помощью промт-тюнинга. Найдем топовый алгоритм декодирования (чтобы ответы были длинные и кайфовые). И в конце обернем нашу модель в сервис и телеграм бота. Так у каждого участника МК останется бот, с которым он сможет поболтать в любой момент. Мастер-класс рассчитан на ML инженеров, которые смогут разобраться с технологиями NLP.