Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Аалитики данных часто сталкиваются с грязными данными, которые могут существенно замедлить процесс анализа. Грязны данные – это пропущенные значения, дубликаты, неконсистентные данные. Пропущенные значения заставляют нас гадать, что же было замыслено нашим коллегой; дубликаты вводят в заблуждение, умножая одно и то же на количество их копий, а неконсистентные данные заставляют нас сомневаться в каждой цифре.Очищать грязные данные можно c Pandas. Рассмотрим основные методы.
В этом материале мы поговорим об устройстве компонента‑декодера в системах машинного обучения, построенных по архитектуре «трансформер», уделив особое внимание отличию декодера от энкодера.
Python модуль для синтаксического анализа. Скачать можно по ссылке: https://pypi.python.org/pypi/pyparsing/
Речь пойдёт про задачу моделирования поведения маятника: коротко разберём теорию, которая лежит в основе модели, немного подумаем над архитектурой и напишем небольшое приложение на связке Python + Tkinter. Реализация будет поддерживать исследование различных маятников с помощью самописных динамических графиков, в которые пользователь может ввести собственные формулы.
Одно из самых прикладных применений языковых моделей (LLM) - это ответы на вопросы по документу/тексту/договорам. Языковая модель имеет сильную общую логику, а релевантные знания получаются из word, pdf, txt и других источников.Обычно релевантные тексты раскиданы в разных местах, их много и они плохо структурированы. Одна из проблем на пути построения хорошего RAG - нахождение релевантных частей текста под заданный пользователем вопрос. В статье мы посмотрим на способы нахождения релевантных текстов, увидим проблемы, которые в связи с этим возникают.
«Зачем мне SQL и python?» — задают резонный вопрос маркетологи или менеджеры по продукту, особенно в сфере недвижимости, оптовой торговли, услуг для бизнеса: «У нас нет миллионов строк данных, нет логов, мы успешно работаем с несколькими таблицами в excel».
Celery – это асинхронная распределенная очередь задач, написанная на Python, она предназначена для обработки сообщений в реальном времени при помощи многозадачности. Используя Celery, можно организовать выполнение задач в фоновом режиме, не загружая основной поток приложения. Используя Celery можно легко организовать выполнение фоновых задач.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
А теперь о том, что происходило в последнее время на других ресурсах.
Интерактивная оболочка для языка программирования Python. Скачать можно по ссылке: https://pypi.python.org/pypi/IPython
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
Недавно дочитал книгу Тиаго Антао, которая в русскоязычном варианте называется «Сверхбыстрый Python», а в оригинале более скромно — «Fast Python». Ее подзаголовок — «Эффективные техники для работы с большими наборами данных».
Простой мощный инструмент тестирования в Python. Скачать можно по ссылке: https://pypi.python.org/pypi/pytest/
Все веб-запросы обрабатываются на сервере — это хорошо всем известно. Но бывает, когда нужно написать специальный программный интерфейс, так называемый API, через который пользователи смогут централизованно получать данные и вносить изменения, например, в свой профиль. В этой статье мы разработаем простой API с помощью самого популярного стека и FastAPI.
Инструкция, посвящённая созданию Telegram Mini Apps с вызовом окна оплаты без создания дополнительной кнопки для этого.Telegram Mini Apps c мгновенным вызовом окна оплаты.
«Мы всего лишь хотели пофиксить баги в своем продукте, а психанули и создали аналог одной из библиотек» — CV-инженеры
Инструмент предназначен для виртуального смешения красок, он содержит солвер, генерирующий рецепты для создания цвета из имеющихся красок. Инструмент поставляется с замеренными мной данными для красок Kimera