Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Нейронные сети очень мощны для выполнения предиктивного анализа и решения аналитических задач. Они широко используются для классификации данных, чтобы обнаруживать закономерности и делать прогнозы. Бизнес-кейсы варьируются от классификации и защиты данных клиентов до классификации текста, поведения потребителей и многих других задач.
This article looks at how to use the low-level cache API in Django.
Именованные сущности – это слово или сочетание, обозначающее объект либо явление определенной категории. Говоря о таких объектах в контексте анализа данных, чаще всего имеют в виду ограниченный набор видов: имя (псевдоним), дата, должность (роль), адрес, денежная сумма, название организации и др.
Расположение данных объектов в строгой структуре документа формирует отдельное признаковое пространство визуальной стороны страницы и может повысить качество классификации (или кластеризации). Предлагаем разобраться, как можно получить и использовать координаты именованных сущностей в документе.
Каждый день мы пишем и актуализируем большое количество тестов для API. Поэтому сегодня я хочу обсудить тему автоматической генерации таких тестов и поделиться с сообществом нашими решениями и опытом.
Для начала давайте подумаем, что приходит вам в голову, когда вы слышите слово «автотесты».
Впервые я столкнулся с техническими собеседованиями еще в 2012 году, когда искал свою первую работу в IT. Я выслушал условия задачи, нацарапал решение на доске, ответил на несколько вопросов и ушел, весь перепачканный черный маркером. В то время я совершенно не представлял, как выглядит весь этот процесс с другой стороны; всё, что мне оставалось – в тревоге ждать результатов и надеяться, что я вписался в неизвестные мне критерии тех, кто проводил собеседование.
У Яндекса много самописных сервисов для внутренних задач: Яндекс.Формы, Яндекс.Диск, трекер, календарь. Со временем их решили использовать не только внутри компании, но и за ее пределами. Так появилась платформа Яндекс.Коннект.
Большинство сервисов Коннекта построено на Python V3. В качестве web-фреймворка используется Django, реже Flask и Tornado, а новые чаще пишутся на FastAPI. Сервисы, как и базы PostgreSQL, MySQL и MongoDB, живут в облаке. В качестве очереди сообщений почти везде используется Celery с MongoDB в качестве брокера. Он и стал проблемой.
У Яндекс.Дзен нет готового API, чтобы агрегировать статистику привычным для аналитиков и маркетологов образом. Чтобы собрать данные, нужно пройти 8 шагов: зайти на zen.yandex.ru, перейти в кабинет, затем в раздел «Статистика», потом на вкладку «Кампании», выбрать период и нажать на «Отчеты». Затем в сформировавшихся отчете Excel перейти на вкладку «Статистика кампаний по дням», выбрать нужную кампанию и создать сводную таблицу.
A new home for the book "Clean Architectures in Python" that can be read online for free and is published in PDF by Leanpub. This website will host other books in the future, stay tuned!
В первую очередь, материал ориентирован на аналитиков, которые манипулируют разумными объемами данных, необходимых для решения практических задач. ETL из Бигдаты в котором перекачиваются сотни Тб ежесуточно живет своей отдельной жизнью.
А теперь о том, что происходило в последнее время на других ресурсах.