Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Генеративно-состязательные сети (Generative Adversarial Networks — GAN), предложенные Goodfellow и др. в 2014 году, произвели революцию в области создания изображений в компьютерном зрении — никто не мог поверить, что эти потрясающие живые изображения на самом деле создаются машинами с нуля. И даже больше — люди раньше думали, что задача генерации невозможна, и были поражены мощью GAN, потому что традиционно в этой области просто не существует каких-либо эталонных данных, с которыми мы могли бы сравнить наши сгенерированные изображения.
В этой статье представлена простая идея, лежащая в основе создания GAN, за которой следует реализация сверточной GAN с помощью PyTorch и процедура ее обучения.
Изначально была выдвинута следующая гипотеза: злоумышленники часто берут фотографии из аккаунтов реальных детей, при этом изменив имя ребенка и реквизиты сбора. Первой мыслью был поиск подобных аккаунтов с дальнейшей классификацией их как подлинные, либо поддельные по каким-то признакам. Однако на практике оказалось, что такие аккаунты довольно быстро блокирует администрация по жалобам пользователей или мошенники закрывают свой аккаунт настройками приватности после появления «разоблачающих» комментариев, неудобных вопросов, и создают новый. При этом реквизиты сбора часто остаются те же самые.
Почему разработчик принимает оффер одной компании и отвергает другой? Глобальный ежегодный опрос Stack Overflow 2020 года показал, что самые важные факторы выбора работы - это языки/ фреймворки/ технологии, на которых предстоит работать, и офисная среда/ корпоративная культура. Помимо вознаграждения, само собой.Мы расспросили разработчиков и их руководителей о python-разработке. И в серии статей расскажем: как устроена “внутренняя кухня” разработки, проектов и продуктов, как компании адаптируют новичков, и какие мотивы были у опытных разработчиков, когда они делали выбор в пользу своего текущего места работы. Первый в очереди - Тинькофф.
Мы продолжаем серию статей про Data Science задачи, решаемые нами в Центре развития финансовых технологий.В прошлых статьях (тут, а также тут) мы рассказывали про решение задач премодерации контента, но не вдавались в детали того, с помощью какого инструментария мы это делали. Сегодня же речь пойдет о том, что помогает нам решать эти задачи, а именно - про нашу Data Science экосистему.
В гостях у Moscow Python Podcast Senior Data Scientist компании Lamoda, организатор курсов DadaGym Петр Ермаков. Обсудили с Петром data science сообщество и ивенты .
Недавно моим родителям установили «умный» термостат. И мне подумалось: неужели я не смогу сам сотворить нечто подобное? Отлично помню себя маленьким — я был одержим технологиями, особенно меня восхищали миниатюрные портативные устройства. Восторг вызывали мини-телевизоры, игровые приставки начала девяностых, наладонники Palm Pilot и коммуникаторы Nokia конца этого же десятилетия, карманные компьютеры, появившиеся на рубеже двухтысячных. Как же я мечтал об этом! И думал, что миниатюрные электронные устройства и системы домашней автоматики — это увлечение сильных мира сего, Брюса Уэйна или Тони Старка.
Первый опыт в веб-разработке и работе с векторной графикой.
$ yappa deploy Все. Твое python приложение доступно в яндекс облаке, у него есть свой урл, оно готово к любому наплыву посетителей. А платишь ты только за время цпу, затраченное на обработку запросов.
В данном руководстве рассмотрено создание чат-бот помощника в Viber на языке программирования Python. Чат-бот имеет доступ к базе данных MySQL, которая в свою очередь связана с АСУ ТП (автоматизированной системой управления технологическим процессом), разработанной на базе логического контроллера Siemens серии S7-1500.
К старту курса о машинном и глубоком обучении делимся переводом статьи, автор которой показывает на практике, как модель машинного обучения может использоваться через Excel. Зачем это нужно? Компании больше и больше вкладывают в исследования и разработку моделей прогнозов; по мнению автора оригинала статьи, разработчика и основателя компании PyXLL доступ к ML-моделям через Excel открывает новые горизонты. Вы сможете показать модель пользователям Excel, у которых нет опыта программирования или широких знаний в области статистики. При желании можно создавать инструменты разработки и тренировки моделей полностью в Excel, например строить графы в TensorFlow. Весь исходный код из статьи доступен на GitHub. Читать далее
В процессе разработки весьма часто встаёт задача преобразования данных, будь то данные от внешнего источника на пути в базу или данные из базы на пути в отчеты и т.п. Если описывать все необходимые преобразования императивно, то можно довольно скоро загрустить. Можно постараться и сделать всё декларативно, скажем, в виде некоторых dict-ов, в которых задать правила (функции?) по работе с каждым отдельным полем.
Этот текст, при его очевидной абсурдности и лишённости смысла, мог показаться вам смутно знакомым. Это начало поэмы «Москва – Петушки», в котором слова, принадлежащие одной части речи, перемешаны между собой в случайном порядке.
В нашей компании очень много пользователей и каждый день они шлют массу обращений на самые разные темы. У нас есть два отдела: "Программные разработки" и "Системные администраторы", и что бы облегчить жизнь техподдержке, был написан классификатор, который стыкует обращение пользователя на тот или другой отдел. В основе классификатора лежит логистическая регрессия.
Рано или поздно сервисы растут, а с большим RPS приходит Highload.
Что делать, когда ресурсов для вертикального масштабирования Redis уже нет, а данных меньше не становится? Как решить эту задачу без downtime и стоит ли её решать с помощью redis-cluster?
На воркшопе Redis Python based cluster Савва Демиденко и Илья Сильченков пробежались по теории алгоритмов консенсуса и попробовали в реальном времени показать, как можно решить проблему с данными, воспользовавшись sharding’ом, который уже входит в redis-cluster.