Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Когда я начинал изучать Django и Wagtail по таким инструкциям, меня часто смущало, что пара команд создает кучу непонятных файлов (особенно на самом старте). Последующее описание этих файлов в инструкциях содержало слишком много деталей, которые трудно было усвоить за раз.
В этом посте я бы хотел посмотреть на Django с очень «философского вида» — минимум кода, максимум общих фактов. Думаю, что такой взгляд поможет тем, кто хочет начать изучать Django но теряется на старте.
Предлагаем вашему вниманию перевод интереснейшего исследования от компании Crowdstrike. Материал посвящен использованию языка Rust в области Data Science (применительно к malware analysis) и демонстрирует, в чем Rust на таком поле может посоперничать даже с NumPy и SciPy, не говоря уж о чистом Python.
Сейчас в глазах обычной публики машинное обучение прочно ассоциируется с различными вариантами обучения нейронных сетей. Если первоначально это были полносвязные сети, потом заместившиеся сверточными и рекуррентными, то теперь это стало совсем экзотическими вариантами типа GAN и LTSM-сетей. Кроме все больших объемов выборок, требуемых для их обучения, они еще страдают невозможностью объяснить, почему было принято то или иное решение. Но существуют и структурные подходы к машинному обучению, программная реализация одного из которых описана в настоящей статье.
Асинхронное программирование – это вид параллельного программирования, в котором какая-либо единица работы может выполняться отдельно от основного потока выполнения приложения. Когда работа завершается, основной поток получает уведомление о завершении рабочего потока или произошедшей ошибке. У такого подхода есть множество преимуществ, таких как повышение производительности приложений и повышение скорости отклика.
С самого начала своего пути как разработчика программного обеспечения я очень любил копаться во внутренностях языков программирования. Мне всегда было интересно, как устроена та или иная конструкция, как работает та или иная команда, что под капотом у синтаксического сахара и т.п. Недавно мне на глаза попалась интересная статья с примерами того, как не всегда очевидно работают mutable- и immutable-объекты в Python. На мой взгляд, ключевое — это то, как меняется поведение кода в зависимости от используемого типа данных, при сохранении идентичной семантики и используемых языковых конструкциях. Это отличный пример того, что думать надо не только при написании, но и при использовании. Предлагаю всем желающим ознакомиться с переводом.
Я CV-разработчик в КРОК. Уже 3 года мы реализуем проекты в области CV. За это время чего мы только не делали, например: мониторили водителей, чтобы во время движения они не пили, не курили, по телефону не разговаривали, смотрели на дорогу, а не сны или в облака; фиксировали любителей ездить по выделенным полосам и занимать несколько мест на парковке; следили за тем, чтобы работники носили каски, перчатки и т.п.; идентифицировали сотрудника, который хочет пройти на объект; подсчитывали всё, что только можно.
Это заключительная статья из серии про сортировки кучей. В предыдущих лекциях мы рассмотрели весьма разнообразные кучные структуры, показывающих отличные результаты по скорости. Напрашивается вопрос: а какая куча наиболее эффективна, если речь идёт о сортировке? Ответ таков: та, которую мы рассмотрим сегодня.
Объекты в CPython занимают в памяти больше места, чем могли бы. Можно ли это исправить, в каких случаях и как
Стейдж-окружение требует данных, которые обладают характеристикам данных продакшена. В идеале это семплированная и санитаризированная копия БД приложения с лайва — без ПД пользователей и критичной бизнес-информации. Скрипты санитаризации дампов очень быстро превращаются в плоходокументируемое императивное спагетти, которое никто не любит поддерживать. Я расскажу подход, который основан на декларативном описании трансформаций данных прямо в классе моделей, dumpdata на стероидах, а также то как же этот дамп накатить на стейдж-окружение
Cофтверное платформенное решение для автоматизации операционных задач в ИТ и публикации автоматизированных задач в корпоративных каналах коммуникации (Slack, почта, Telegram, и др.). Опыт использования в операторе мобильной связи