Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Модуль для работы с многомерными массивами. Изменения описаны по ссылке https://allmychanges.com/p/python/numpy/#1.12.1. Скачать можно по ссылке: http://pypi.python.org/pypi/numpy/
http клиент/сервер для asyncio. Изменения описаны по ссылке https://allmychanges.com/p/python/aiohttp/#1.3.2. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
Как, опять? Ещё один туториал, пережёвывающий официальную документацию от Telegram, подумали вы? Да, но нет! Это скорее рассуждения на тему того, как построить функциональный бот-сервис используя Python3.5+, asyncio и aiohttp. Тем интереснее, что заголовок на самом деле лукавит…
Утилита позволяет поймать посылку из программы и распарсить его
На Хабре уже полно статей-туториалов с заголовками «Создание бота на Python», но многие из них используют готовые обертки над HTTP-интерфейсом Bot API Телеграма. Я же использую стандартную библиотеку для отправки и получения GET- и POST-запросов — requests. И так, рассмотрим создание примитивного Телеграм бота, который будет отвечать на все наши текстовые сообщения. Это будет заготовка для дальнейшего расширения.
Это модуль с набором готовых моделей для какого-то блога
Статья описывает, как можно поучавствовать в улучшении Django. Описано очень подробно
Гайд описавает, как добавить поддержку Python3 в библиотеку.
Я люблю Python. Нет, правда, это отличный язык, подходящий для широкого круга задач: тут вам и работа с операционной системой, и веб-фреймворки на любой вкус, и библиотеки для научных вычислений и анализа данных. Но, помимо Python, мне нравится функциональное программирование. И питон в этом плане неплох: есть замыкания, анонимные функции и вообще, функции здесь — объекты первого класса. Казалось бы, чего ещё можно желать? И тут я случайно наткнулся на Coconut — функциональный язык, компилируемый в Python. Всех любителей Python и ФП прошу под кат.
Данный пакет позволит пользователям автоматическую установку и настройку CARP/UCARP для FreeBSD, Ubuntu, CentOS 6, CentOS 7 серверов.
Компания Google представила первый стабильный выпуск платформы машинного обучения TensorFlow.