Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Статья о том, как был передан PyVideo.org в другие руки
13 августа в Avito прошла встреча специалистов по Data Science, использующих Python.
В этой заметке я хочу рассказать о том, как можно достаточно легко строить интерактивные графики в Jupyter Notebook'e с помощью библиотеки plotly. Более того, для их построения не нужно поднимать свой сервер и писать код на javascript. Еще один большой плюс предлагаемого подхода — визуализации будут работать и в NBViewer'e, т.е. можно будет легко поделиться своими результатами с коллегами. Вот, например, мой код для этой заметки.
gist, который показывает, что можно под Pebble писать на Python. В комментариях к gist есть ссылка на репозиторий
Автор позиционирует его как нечто среднее между Django и Flask.
В данной статье разобран принцип работы метода машинного обучения«Обучение с подкреплением» на примере физической системы. Алгоритм поиска оптимальной стратегии реализован в коде на Python с помощью метода «Q-Learning».
Обучение с подкреплением — это метод машинного обучения, при котором происходит обучение модели, которая не имеет сведений о системе, но имеет возможность производить какие-либо действия в ней. Действия переводят систему в новое состояние и модель получает от системы некоторое вознаграждение. Рассмотрим работу метода на примере, показанном в видео. В описании к видео находится код для Arduino, который реализуем на Python.
Фреймворк для простого создания интерфейсов командной строки.. Изменения описаны по ссылке https://allmychanges.com/p/python/click/#6.7. Скачать можно по ссылке: https://pypi.python.org/pypi/click/