Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Worlde — новая головоломка, которая захватила внимание множества людей по всему миру. За подробностями приглашаем под кат.
Разработка игр на Python — это не только PyGame, Tower Defense и платформеры, а это и DOOM, и MMORPG, и симуляторы свиданий/отношений, и визуальные новеллы, и конкурсы DARPA, и моделирование вселенной, и автотрекинг низкоорбитальных спутников.
Под катом список 9 библиотек для разработки игр и полезные гайды к каждой библиотеке.
Сегодня хочу поговорить про идентификацию, аутентификацию и авторизацию. В прошлом году я делал достаточно подробный ресерч по этой теме и хочу рассказать о разнице нескольких проектов, которые решают эти вопросы.
В статье пойдёт речь о том, как можно автоматически разделить датасет изображений на кластеры, которые поделены по качественному контекстному признаку, благодаря эмбедингам из нашумевшей нейронной сети CLIP от компании Илона Маска. Расскажу на примере контента из нашего приложения iFunny.
В предыдущей статье было показано как, используя несколько модулей Python, можно обрабатывать текстовые данные и переводить их в числовые векторы, чтобы получить матрицу векторных представлений коллекции документов. В данной статье будет рассказано об использовании матрицы векторных представлений текстов в сервисе автокластеризации первичных событий в платформе monq для зонтичного мониторинга ИТ-инфраструктуры и бизнес-процессов.
Эта история началась со странного падения Python приложения. Сначала я не придал внимания данной проблеме: приложение запущено в Openshift и периодически падает. К такому поведению может приводить всякое, например, иногда ноды обновляют, а иногда случаются аварии и тогда одну или несколько нод выводят из эксплуатации. Однако со временем проблема стала регулярной и начала проявляться некоторая закономерность. При этом в Sentry не было каких-либо ошибок. Я был полностью уверен, что это какая-то типовая проблема и ее можно быстро решить, но как же я ошибался.
Иногда перед некоторыми химиками может встать задача получить картинку с публикационным качеством, на которой будет молекула, и над каждой связью будет подписан её порядок. В этом посте, на примере кораннулена, мы познакомимся с простейшими (полуэмпирическими) квантово-химическими расчётами, визуализацией молекул, узнаем про порядки связей, и напишем питоновский скрипт, который будет генерировать из результатов наших расчётов картинку при помощи LaTeX-овского пакета TikZ картинку, которую уже почти-почти можно вставлять в статью. Всё это под катом :)
Решение задач с помощью метода "Разделяй и Властвуй" или по-английски "Divide and Conquer" является одним из базовых методов по ускорению алгоритмов. Примером тому служит переход от квадратичной сложности пузырьковой сортировки или сортировки вставками к сложности при сортировке слиянием. Или переход от линейной сложности к логарифмической, при реализации поиска элемента в отсортированном массиве (см. бинарный поиск).
Чтобы понять, для чего нужны суперпиксели, разберёмся сначала, что такое «сегментация». Сегментация изображений — это распознавание формы объектов. При сегментации изображения каждому его пикселю присваивается класс. Возьмём, к примеру, задачу сегментации изображения для категорий «круг» и «квадрат».
С изучением языков возникает проблема переключения раскладок клавиатуры. Когда два языка все просто, жамкаешь ALT+SHIFT (или что там у вас) и переключаешься на следующий язык. И ты всегда знаешь на какой именно язык переключился. Когда раскладок становится хотя бы 3 это уже вызывает проблемы. Потому что нажать ALT+SHIFT нужно один или несколько раз и непонятно сколько именно, не посмотрев в угол экрана
Любая крупная компания представляет собой множество обособленных или взаимосвязанных процессов, которые решают задачи различной направленности. Как правило, любой процесс является сложным механизмом взаимодействия людей, сервисов или других компаний, от которых зависит конечный результат исполняемого процесса. Перерывы в поставках ресурсов, изъяны в сервисах и алгоритмах, длительные исполнение простых операций или их повторное выполнение и многие другие факторы приводят к дополнительным экономическим издержкам и накоплению негативного клиентского опыта. Таким образом, анализ процессов и устранение недостатков в них — одна из важных составляющих для успешного ведения бизнеса.
Возможно, ты сейчас участвуешь в соревновании по анализу данных или просто решил погрузиться в мира Data Science. Тогда эта статья будет тебе очень полезна!
Сражу скажу, что трюки, о которых мы сегодня поговорим, я не просто так назвал "грязными". Речь пойдет о вещах, которые в каком-то смысле нечестные или просто вводят в заблуждение других участников соревнований. Долго думал, стоит ли про эти техники вообще рассказывать, ведь в борьбе за призовые всегда велик соблазн начать хитрить. Решил, что все-таки расскажу про некоторые приемы, дабы вооружить честных людей, которые играют по правилам.
В задачах машинного обучения для обучения модели может использоваться известная целевая переменная (задачи такого типа называются «обучение с учителем»), либо модель самостоятельно учится находить закономерности с имеющихся данных, не имея заранее известные правильные результаты (такой тип задач называется «обучение без учителя»). Обучение с подкреплением (Reinforcement Learning, RL) не относится ни к первому типу, ни ко второму, однако обладает свойствами и того, и другого. Этот вид машинного обучения в настоящее время бурно развивается, разрабатывается множество теоретических алгоритмов RL [1], однако основная причина всплеска интереса заключается в множестве практических задач, в которых применяется RL, прежде всего в автоматизации, оптимизации и робототехнике. Обучение с подкреплением эффективно прежде всего там, где системе требуется анализировать окружающую среду и выбирать политику поведения с учетом получаемого отклика.
PyQt — это библиотека Python для создания приложений с графическим интерфейсом с помощью инструментария Qt. Созданная в Riverbank Computing, PyQt является свободным ПО (по лицензии GPL) и разрабатывается с 1999 года. Последняя версия PyQt6 — на основе Qt 6 — выпущена в 2021 году, и библиотека продолжает обновляться. Это руководство можно также использовать для PySide2, PySide6 и PyQt5.
Конечной задачей всей деятельности по созданию алгоритмов для обработки естественного языка (Natural Language Processing, NLP) является создание искусственного интеллекта (ИИ), который бы понимал человеческий язык, причем “понимал” в значении “осознавал смысл” (анализ текста) и “делал осмысленные высказывания” (синтез текста). Пока до этой цели ещё очень далеко, можно применять различные алгоритмические методы для извлечения какой-либо полезной информации из текстовых данных. А это уже очень полезно для ИТ мониторинга. В этой статье мы расскажем о применении моделей ML для целей классификации поступающих данных.
Это адаптированный перевод статьи Modern Python part 1: start a project with pyenv & poetry Фаози Браза, специалиста по Data Engineer. Повествование ведётся от лица автора оригинала.
"Слабой" ссылки не достаточно, чтобы объект оставался "живым": когда на объект ссылаются только "слабые" ссылки, сборщик мусора удаляет объект и использует память для других объектов. Однако, пока объект не удалён, "слабая" ссылка может вернуть объект, даже если не осталось обычных ссылок на объект.
Сегодня статья посвещана организации процесса фото - и видиосъёмки с микрокомпьютера Raspberry pi с последующим сохранением данных в облако в атоматическом режиме.
У меня стояла задача создать систему фото- и видеонаблюдения за птицами у кормушки.
В современном мире множество приложений используют трехуровневую архитектуру с базой данных в слоях данных. Наличие юнит-тестов обычно упрощает поддержку продукта, но присутствие базы данных в архитектуре заставляет разработчиков применять смекалку.
В этой статье я хочу провести обзор разных способов юнит-тестирования приложения с БД и рассказать о способе, который я не видел в русскоязычном сегменте интернета. Статья будет посвящена Python 3, pytest и ORM-фреймворку SQLAlchemy, но методы переносимы на другие инструменты.
Про colab знают, наверное, все. Этот инструмент позволяет независимым исследователям использовать облачную инфраструктуру с GPU и TPU бесплатно или почти бесплатно. Как всегда, проблемы возникают на больших данных.