Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Итак, предположим у нас есть на фронте React.js, на бэке соответственно DRF. Либо другие аналоги. API бэкенда полностью открыто - как для нашего фронта, так и открыто для postman, scrapy и т.п. Также у нас есть информация, что используя наше же api - конкуренты активно парсят цены, остатки и т.п. Можем ли мы им это запретить? - Не думаю. А вот усложнить им жизнь и развлечся за деньги заказщика сделать это интересным образом - вполне.
Читая pep8, я наткнулся на пункт об использовании анонимных функций - по версии пепа, они снижают читабельность, если использовать переменную с значением функции как функцию, лучше использовать def. Я решил сравнить def и lambda по другому параметру - быстродействию. Я предполагал, что lambda, заточенный под однострочники , будет быстрее выполняться и создаваться. В этом исследовании я это проверю.
Далее собственно детектив как оно есть, "расследование" которого ещё не окончено, можно присоединиться кстати… Пост будет обновляться, по окончанию (я надеюсь что баг таки найдётся) пост изменит название получив префикс "[SOLVED]"...
На КДПВ в гостях у TalkPython вы видите Гвидо ван Россума — создателя Python, Марка Шеннона, план ускорения Python в 5 раз за 4 года и, конечно, автора подкаста. А мы делимся подборкой пакетов Python, о которых шла речь в выпусках за уходящий год.
В прошлой статье я кратко описал методы и подходы, которые мы используем в inDriver при распознавании фото документов. Во второй части подробно опишу архитектуру CRAFT и CRNN, а также варианты их использования. Прошу под кат!
В предыдущих статьях мы подробно разобрали работу сериалайзера на основе классов BaseSerializer и Serializer, и теперь мы можем перейти к классу-наследнику ModelSerializer.
Все началось с одной из учебных групп в Telegram. Студенты там очень любят делать стикеры из сообщений своего преподавателя. Я выяснил, что делаются они в полуавтоматическом режиме: сообщение пересылается в бота, который рисует «пузырек» сообщения, а результат пересылается в официального стикер-бота.
Теорема о свёртке утверждает, что преобразование Фурье от свёртки двух функций является произведением их Фурье образов
В новом хобби проекте мне потребовалось детектировать людей на видео. Это одна из основных задач, решаемых искусственным интеллектом, но я давно этим не занимался и несколько отстал от жизни.
Это произошло, когда я присоединилась к одному из наших проектов, где был не только привычный REST, но и GraphQL API. Это было моё первое знакомство с ним. Я понятия не имела, что он собой представляет, в чем его особенности, а самое главное для меня, как QA инженера – не знала, как его тестировать.
Ниже я расскажу, что делала я, с какими проблемами сталкивалась, с чего можно начать и что важного и особенного надо знать про GraphQL для успешного тестирования как руками, так и с помощью автотестов. Вполне вероятно, что это поможет и вам разобраться в данном вопросе.
В современных веб-приложениях большинство запросов к базе данных пишется не на сыром SQL, а с использованием объектно-реляционного отображения (ORM). Оно автоматически генерирует SQL-запросы по привычному объектно-ориентированному коду. Однако эти запросы не всегда оптимальны, и с ростом нагрузки на веб-приложение встает вопрос их оптимизации. Как раз в ходе такой оптимизации наша команда обнаружила, что документация Django с нами не совсем честна.
Недавно пришлось познакомиться тесно с порталами государственных закупок Казахстана и Узбекистана в рамках Школы Данных. Мы (авторка поста, разработчик скрепера и журналисты) исследовали тему "доступной среды" (удобная инфраструктура для людей с инвалидностью) и столкнулись с необходимиостью написать скрепер, которые бы скачивал данные по ключевым словам.
В гостях у Moscow Python Podcast Python Техлид компании СберДевайсы Владимир Соколов. Поговорили с Владимиром о том, чем может заниматься Python разработчик в ML системах и о проблемах речевой аналитики.
Помню, лет так 12 назад, когда я был ещё школьником, у всех моих знакомых стояла windows XP. И в преддверии нового года у нас была традиция, скачать на каком-нибудь сайте новогоднюю ёлочку, которая запускается отдельной программой и просто на рабочем столе (либо на любом другом окне, если её открыть поверх окон) играет гифка с этой ёлочкой. Мелочь, но к новогоднему настроению она давала в те года +100 очков.
В этой небольшой статье я хочу дать ответ на вопрос, который возник у меня, когда я познакомился с сессиями в SQLAlchemy. Если сформулировать его кратко, то звучит он примерно так: “А зачем оно надо вообще”? Меня, как человека пришедшего из мира джанги, сессии приводили в уныние и я считал их откровенной фигней, которая усложняет жизнь. Но я ошибался. Как оказалось, сессии в алхимии - штука очень даже полезная. И вот почему.
В данной статье я хотел бы очень кратенько, без подробностей рассказать про интересный проект, который будучи достаточно простым, сильно увеличивает возможности Django фреймворка. Мне он показался достаточно интересным.
Продолжение исследования головоломки technicalseo.expert которая будет сломана самым нетривиальным образом.Предыдущий уровень и чуть подробнее о самой головоломке в первом посте
technicalseo.expert - это головоломка для SEO
После запуска моделей на прод рано или поздно приходит понимание того, что Ваши сервисы популярны и что KPI растут. Вместе с популярностью приходят тормоза и нестабильность. В этой статье речь пойдет о прикладном аспекте оптимизации быстродействия алгоритмов/моделей на примере движка распознавания автомобильных номеров “Nomeroff Net”. Буду делиться опытом, полученным на протяжении 2-х летней разработки. Если коротко: нам удалось ускорить время распознавания 1 фото более чем в 10 раз.
На нашем стриме Сергей Галич - выпускник курсов Learn Python, который живёт в Сан-Франциско и работает в Tesla. Про его карьерный путь и работу мы и поговорим в этом интервью.