Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Об обработке текстов на естественном языке сейчас знают все. Все хоть раз пробовали задавать вопрос Сири или Алисе, пользовались Grammarly (это не реклама), пробовали генераторы стихов, текстов... или просто вводили запрос в Google. Да, вот так просто. На самом деле Google понимает, что вы от него хотите, благодаря штукам, которые умеют обрабатывать и анализировать естественную речь в вашем запросе.
Мы продолжаем рассказывать о новых трендах в BI, и сегодня речь пойдет о расширении возможностей аналитических систем и кастомизации дашбордов под конкретные (и порой уникальные) задачи клиентов. Для этого необходимо работать на стыке DS (Data Science) и BI, а значит — в BI должен быть базовый набор ML- инструментов (Machine Learning), доступных не только суровым математикам, но и бизнес-аналитикам. В этой статье мы рассмотрим возможные варианты пересечения сфер BI и DS для проведения более глубокой аналитики, с плюсами и минусами, и рассматриваем основные подходы к внедрению ML в BI на уровне стандартного функционала.
Геоаналитика с помощью Python: GeoPandas, folium, Uber H3, OSM + примеры как можно определять лучшие локации для поиска помещений под открытие кофейни (и не только).
Недавно мы с девушкой серьезно поговорили и выяснилось, что я даже не пишу ей “С добрым утром” и вообще редко пишу по утрам. В целом, причина кроется в том, что я не просыпаюсь с восходом первых лучей солнца (как она), а переписываться не очень люблю. Ну а ей, конечно же, приятно получать нежности по утрам и все такое.
Меня зовут Константин Кулишов, я работаю DevOps-инженером в компании, которая предоставляет комплексное сопровождение клиента от разработки до поддержки и продвижения.
В этой статье я кратко опишу ChatOps и расскажу, как вдохновился и написал приложение https://github.com/KKulishov/chatops.
Для начала нужно обзавестись этим самым "mesh"-ем поверхности, или триангуляцией поверхности, полигональной сеткой, разбиением двумерного многообразия. В данном случае работа будет вестись именно с треугольной сеткой, но все ниже представленные формулы и код (если немного модифицировать), будет работать с сеткой состоящей из любых полигонов. Главное, чтобы они были малые, от этого зависит точность, чем меньше - тем лучше.
Я собрал умную коробку для круглогодичного выращивания клубники у себя на балконе. Расскажу как сделал управление освещением, поливом, отоплением, какие датчики использовал, с какими проблемами столкнулся и покажу результат.
На работе, в обеденный перерыв коллега показал игрушку на Яндекс играх – Филворды. Как то не заладилась игра у меня – вроде простые слова, но дело шло медленно. А у товарища уровень был выше 400. Первая мысль при таком фэйле – конечно, показать глупой машине, что есть кто-то умнее ее! То есть другая машина…
В прошлой статье мы познакомились с aiohttp и написали первое веб-приложение: стену с отзывами. Сегодня продолжим изучение и добавим асинхронное взаимодействие с базой данных PostgreSQL.
В настоящее время уже сложно найти крупную компанию, которая не использовала бы возможности накопления и использования больших данных.
Рассмотрим пример простой программы на Python с помощью библотекы docx для автоматизации рабочего процесса, а именно автоматической вставки файлов (в данном случае изображений) и их подпись в документах Word (docx).Данная статья будет интересна для начинающих изучающих Python, а также полезна для тех кто работает с большими объемами изображений, графиков, осциллограмм и тому подобное. В ней мы рассмотрим простой и удобный способ вставки изображений в Word и их подписью с помощью Python.Редактирования кода займет 5 минут, выполнение программы займет 5 секунд. Вы сэкономите 300 минут работы. Я опишу свой максимально дубовый и непрофессиональный но простой код который Вы сможете повторить в своих проектах. (Полный код в низу статьи).
Компьютерное зрение — очень интересная и востребованная область искусственного интеллекта. Компьютерное зрение сейчас используется повсеместно, начиная от сегментации медицинских изображений, заканчивая управлением автомобилем. Сейчас мы коснемся одной из основных задач компьютерного зрения — обнаружения объектов.
Меня зовут Сергей Радченко, и мы с командой профессионально занимаемся тестированием уже несколько лет. Сегодня я посчитал количество автотестов, которые мы подготовили для веб-интерфейсов, десктопных приложений, API, систем двухфакторной авторизации и так далее (их оказалось более 5000). И мне захотелось рассказать о нашем опыте создания экосистемы для автоматизированного тестирования. В этом посте вы найдете описание полезных для комплексного тестирования фреймворков, а также исходный код некоторых дополнительных методов, которые мы дописали самостоятельно, чтобы написание тестов происходило быстрее, и тестирование приносило больше пользы.
Добрый день, сегодня мы развернем serverless инфраструктуру на базе AWS lambda для загрузки изображений (или любых файлов) с хранением в приватном AWS S3 bucket. Использовать мы будем terraform скрипты, залитые и доступные в моем репозитории kompotkot/hatchery на GitHub.
В этой статье я бы хотел поделиться способом написания асинхронных микросервисов на Python, общающихся друг с другом через Kafka. В основе этих микросервисов лежит библиотека потоковой обработки Faust. Но Faust - это не только работа с Kafka, он также содержит HTTP-сервер и планировщик для выполнения задач с определенным интервалом или по расписанию.
Несмотря на то, что в тестовом проекте используются такие инструменты и библиотеки, как FastAPI, Grafana, Prometheus, основная речь пойдет о Faust.
Пусть у нас есть картофель фри, котлета, хлеб, помидор, огурец и молочный коктейль. Сколько чего нужно съесть, чтобы получилось 30 гр. белка, 25 гр. жиров и 60 гр. углеводов? В прошлый раз я баловался и пытался решить это с помощью матриц, на этот раз - с помощью линейных уравнений и python библиотеки PuLP.
Наделяем наш медиацентр еще одной возможностью - управление торрент-клиентом и его загрузками из мессенджера Telegram через чат-бота. Теперь вы не будете ограничены лишь локальной домашней сетью. Управлять загрузками на домашнем сервере из любой точки мира? Легко!
Существует много проекты в которых нужно сразу видеть результат переменных в момент выполнения программы. Например обработка нажатий клавиш от пользователя, навигация между страницами в GUI приложениях, обработка данных из форм на веб проектах.