IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
читайте авторский блог

     31.03.2020       Выпуск 328 (30.03.2020 - 05.04.2020)       Статьи

Моя шпаргалка по pandas

Один преподаватель как-то сказал мне, что если поискать аналог программиста в мире книг, то окажется, что программисты похожи не на учебники, а на оглавления учебников: они не помнят всего, но знают, как быстро найти то, что им нужно.

Возможность быстро находить описания функций позволяет программистам продуктивно работать, не теряя состояния потока. Поэтому я и создал представленную здесь шпаргалку по pandas и включил в неё то, чем пользуюсь каждый день, создавая веб-приложения и модели машинного обучения.

     31.03.2020       Выпуск 328 (30.03.2020 - 05.04.2020)       Статьи

Спартанское обучение нейронных сетей

Одна из проблем обучения нейронных сетей — переобучение. Это когда алгоритм научился хорошо работать с данными, которые он видел, а на других он справляется хуже. В статье мы рассказываем, как попытались решить эту проблему, совместив обучение градиентным спуском и эволюционным подходом.

     30.03.2020       Выпуск 328 (30.03.2020 - 05.04.2020)       Статьи

«Вы уж простите, обознался...» или распознаем малину и контроллеры с помощью Tensorflow Object Detection API

В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.

В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.

     30.03.2020       Выпуск 328 (30.03.2020 - 05.04.2020)       Статьи

Распространение сферического коня в вакууме по территории РФ

Привет от ODS. Мы откликнулись на идею tutu.ru поработать с их датасетом пассажиропотока РФ. И если в посте Milfgard огромная таблица выводов и научпоп, то мы хотим рассказать что под капотом.

 

Что, опять очередной пост про COVID-19? Да, но нет. Нам это было интересно именно с точки зрения математических методов и работы с интересным набором данных.

     29.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Общий финансовый анализ на Python (Часть 2)

Скользящее окно (Moving Windows)
В заголовке я привел дословный перевод. Если кто меня поправит, и другой термин более применим — то спасибо.

Смысл скользящего окна– с каждым новым значением функция пересчитывается за заданный период времени. Этих функций большое количество. Для примера: rolling.mean(), rolling.std(), которые чаще всего и используют при анализе движения акций. rolling.mean() — это обычная скользящая средняя, которая сглаживает краткосрочные колебания и позволяет визуализировать общую тенденцию.

     28.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Моделируем вселенную: небесная механика наглядно

Давайте представим, что нам нужно запустить футбольный мяч на орбиту Земли. Никакие ракеты не нужны! Хватит горы, высотой 100 километров и недюжинной силы. Но насколько сильно нужно пнуть мяч, чтобы он никогда больше не вернулся на Землю? Как отправить мяч в путешествие к звёздам, имея только грубую силу и знание небесной механики?

     27.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Clean Architecture глазами Python-разработчика

Python, хоть и мощный, но всего лишь инструмент, который позволяет писать выразительный самодокументируемый код, но не гарантирует этого, как не гарантирует этого и соблюдение PEP8. Когда наш, казалось бы, простой интернет-магазин на Django начинает приносить деньги и, как следствие, накачиваться фичами, в один прекрасный момент мы понимаем, что он не такой уж и простой, а внесение даже элементарных изменений требует все больших и больших усилий, а главное, что эта тенденция все нарастает. Что случилось, и когда все пошло не так?

     27.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Видео

Moscow Python Podcast. Data science в распределенной среде (level: middle)

В гостях у Moscow Python Podcast Андрей Гаврилов, Big Data Python developer в EPAM. Поговорили о сложностях связанных с распределенными вычислениями в Big Data и Data science

     26.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Ранжирование округов Москвы по стоимости аренды с Python

Сейчас программирование все глубже и глубже проникает во все сферы жизни. А возможно это стало благодаря очень популярному сейчас python’у. Если еще лет 5 назад для анализа данных приходилось использовать целый пакет различных инструментов: C# для выгрузки (или ручки), Excel, MatLab, SQL, и постоянно “прыгать” туда сюда вычищая, сверяя и выверяя данные. То сейчас python, благодаря огромному количеству прекрасных библиотек и модулей, в первом приближении благополучно заменяет все эти инструменты, а в связке с SQL так вообще “горы свернуть можно”.

     26.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Топ-3 функции Python, о которых вы не знали (Наверное)

Будучи одним из самых популярных языков 21-го века, Python, безусловно, обладает множеством интересных функций, которые стоит изучить подробно. Три из них будут рассмотрены сегодня, каждая — теоретически, а потом и на практических примерах.

     25.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Компилятор Befunge на Python

В процессе подготовки к курсу «Основы компиляторов» для студентов 4-го курса я изучал различные эзотерические языки программирования. Вот хорошая статья на эту тему. В статье самым интересным мне показался язык Befunge (Крис Пресс, 1993 год), особо отмечу три его особенности

     25.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Celery throttling — настраивам rate limit для очередей

​ В этой статье я покажу как решить одну из проблем, возникающих при использовании распределенных очередей задач — регулирование пропускной способности очереди, или же, более простым языком, настройка ее rate limit'a. В качестве примера я возьму python и свою любимую связку Celery+RabbitMQ, хотя алгоритм, который я использую, никак не зависит от этих инструментов и может быть реализован на любом другом стэке.

     24.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Пробуем запустить GAN сети в OpenVINO

Репозиторий моделей Open Model Zoo библиотеки OpenVINO содержит много самых разных глубоких нейронных сетей из области компьютерного зрения (и не только). Но нам пока не встретилось GAN моделей, которые генерировали бы новые данные из шума. В этой статье мы создадим такую модель в Keras и запустим ее в OpenVINO.

     23.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Определяем COVID-19 на рентгеновских снимках с помощью Keras, TensorFlow и глубокого обучения

С помощью этого руководства мы с помощью Keras, TensorFlow и глубокого обучения научимся на собранном вручную датасете из рентгеновских снимков автоматически определять COVID-19.

Как и многие другие, я искренне беспокоюсь относительно COVID-19. Я заметил, что постоянно анализирую своё состояние и гадаю, подхвачу ли болезнь и когда это произойдёт. И чем больше я об этом беспокоюсь, тем больше это превращается в болезненную игру разума, в которой симптоматика сочетается с ипохондрией

     23.03.2020       Выпуск 327 (23.03.2020 - 29.03.2020)       Статьи

Анализ скорости распространения COVID-19 и публикация результатов на dstack.ai

Несмотря на всю важность и популярность анализа данных печальная ситуация вокруг вируса COVID-19 еще больше подогрела интерес к этой области. Последние пару месяцев правительства и отдельные люди во всем мире пытаются собрать данные о COVID-19 и построить модели, которые помогут предсказать эффект от вируса на нашу жизнь и экономику, а также понять как спасти жизни и бороться с кризисом.

     21.03.2020       Выпуск 326 (16.03.2020 - 22.03.2020)       Статьи

Мой способ знакомства учеников младших классов с Python

В наше время большинство детей знакомится с миром программирования через создание проектов на платформе scratch.mit.edu Создание проектов происходит путем соединения разноцветных блоков без ввода кода с клавиатуры (вводим только значения переменных).

Однако, дети взрослеют, им становится тесно в мире Scratch, и в этот момент им можно предложить несколько путей развития.

     21.03.2020       Выпуск 326 (16.03.2020 - 22.03.2020)       Статьи

Реализуем преобразования кода на Python

Сегодня мы предлагаем вам перевод статьи, затрагивающей не самую обсуждаемую тему: компиляцию кода в Python, а именно: работу с абстрактным синтаксическим деревом (AST) и байт-кодом. Притом, что Python является интерпретируемым языком, такие возможности в нем чрезвычайно важны с точки зрения оптимизации. О них мы сегодня и поговорим.

Вы когда-нибудь задумывались, как именно компилятор оптимизирует ваш код, чтобы он работал быстрее? Хотите узнать, что такое абстрактное синтаксическое дерево (AST) и для чего оно может использоваться?

     20.03.2020       Выпуск 326 (16.03.2020 - 22.03.2020)       Статьи

Как Data-Engineer за данными следил

Хочу рассказать вам, как мы писали и внедряли сервис для мониторинга качества данных. У нас есть множество источников данных: данные с финансовых рынков, торговая активность наших клиентов, котировки и многое другое. Все это генерирует миллиарды записей в день в наших процессах. Полнота и консистентность торговых данных — критический компонент бизнеса Exness.

Если вам близки проблемы обеспечения качества данных и вам интересно, как мы решили эту задачу у себя, то добро пожаловать под кат.

     17.03.2020       Выпуск 326 (16.03.2020 - 22.03.2020)       Статьи

Получить выписку из Росреестра через ФГИС ЕГРН и python. Часть 2

В этой статье попробуем получить выписки из ФГИС ЕГРН с помощью python (selenium) сразу по нескольким объектам недвижимости, решим капчу с помощью сервиса anticaptcha, используя его api. При встрече с капчей нейросети трогать не будем, так как они могут показаться сложнее в реализации, да и процент «успешных разгадываний» капч с их помощью пока ниже.