Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Тестирование на скорость рисования 2D графиков и измерение fps популярных графических пакетов (Mayavi 3D, PyVista, Matplotlib, PyQTGraph, Plotly, PyGame, Arcade, pyOpenGL, VisPy, Bokeh) Возможно ли на слабом железе получить FPS=50?
Python завоевал популярность благодаря простоте и изящности, но когда дело доходит до низкоуровневых действий или махинаций, требующие производительность и быстроту, на помощь приходит C.
А теперь о том, что происходило в последнее время на других ресурсах.
Эта статья — сжатый туториал на тему подключения педалей экспрессии к компьютеру. От читателя не требуется специальных навыков в области электроники, но умение паять желательно. На минималистичное повторение подключения при наличии всех узлов и материалов действительно достаточно полчаса (автор проверил с секундомером и уложился в 10 минут). С другой стороны, верхнего предела нет: потенциал по обработке сигнала с педалей (кривые, лимиты) при этом ограничивается разве что фантазией, средствами языка Python и быстродействием контроллера.
Визуальный трекинг объектов без обучения – сложная задача, особенно в динамических сценах. Новый метод SAMURAI расширяет возможности SAM-2, интегрируя механизмы моделирования движения и улучшая архитектуру памяти.SAMURAI использует фильтр Калмана для моделирования движения и стабилизации предсказаний, что позволяет значительно повысить точность трекинга в сложных условиях. Метод превосходит существующие zero-shot методы и демонстрирует конкурентоспособные результаты по сравнению с обучаемыми моделями.
Волатильность является одним из важнейших параметров в оценке опционов, управлении рисками и построении торговых стратегий. Классическая модель Блэка-Шоулза-Мертона, предполагающая постоянную волатильность, не способна отразить динамику рынка, где наблюдаются эффекты «улыбки волатильности» и кластеризации. Для более точного описания рыночных процессов разработаны модели стохастической волатильности, среди которых наиболее известными являются модель Хестона и модель SABR. Эти подходы учитывают случайный характер изменений волатильности и позволяют более адекватно оценивать деривативы.
В рамках исследования и отслеживания угроз группа Supply Chain Security департамента Threat Intelligence экспертного центра Positive Technologies (PT ESC) обнаружила и предотвратила вредоносную кампанию в главном репозитории пакетов Python Package Index (PyPI). Атака была нацелена на разработчиков, ML-специалистов и простых энтузиастов, которым могла быть интересна интеграция DeepSeek в свои системы.
Сегодня хочу рассказать, как мы совместно со специалистами ТЭЦ крупного металлургического предприятия сделали цифровой сервис для оптимизации работы питательных электронасосов (ПЭН). Годовой экономический эффект от реализации сервиса превзошел наши ожидания и составил 19,6 млн рублей. Это, на первый взгляд, не так много для большого завода, но учитывая, что там работает целый ряд подобных решений, в совокупности общая сумма экономии впечатляет.
Мы создаём ML-модели и сервисы, которые автоматизируют работу с картами и данными. Но перед тем, как обучить модель и выкатить сервис, есть ещё много работы по сбору датасетов и разработке моделей. И обычно все эти задачи выполняли ML-инженеры.
Основная задача была определить сгенирирован ли текст или написан студентом(типичная бинарная классификация). Знаний тогда было не очень много, чтобы придумать свое решение, поэтому, по заветам курса, не стал придумывать велосипед, накинул побольше веса для CatBoost и попытался попасть в конечное распределение на private с помощью замены наивного баеса на SVM. В итоге, везение было на моей стороне, я получил серебро за это решение, заняв 152 место из 4500)
Сегодня поговорим о FastAPI и Litestar — фреймворках для микросервисов. У каждого из них свои сильные стороны, так какой выбрать для своего проекта? Давайте разбираться. Ниже — о плюсах и минусах каждого, сравнение производительности и примеры валидации.
В статье разберём некоторые техники обнаружения плавающих багов, вызванных конкурентностью. Сделаем подход к автоматическому тестированию устойчивости веб-сервисов к различным race condition. Примеры будут на python + asyncio + sqlalchemy, но эти подходы применимы к любым моделям конкурентности, которые подвержены состояниям гонки.
При работе с нейросетями-классификаторами у всех на слуху какие-то известные архитектуры, которые характеризуются числом параметров, скоростью вычислений (инференса), точностью выполнения той или иной известной задачи. Популярны соревнования, посвящённые тому, насколько точно можно решить задачу классификации на типовых датасетах, и часто борьба уже идёт за доли процента [PWC]. Однако в реальных задачах нейросети часто показывают себя куда хуже, чем в «лабораторных» условиях, что переводит акццнт внимания с тренировочных и тестовых (train-test) задач на проверку обобщающей способности (generalization) нейросетей.
В этой статье рассказываю, как мы обучили Telegram-бота для оповещения о задачах, согласовании бизнес-процессов и очистки каналов от уволившихся сотрудников. Мои коллеги Руслан Мансуров и Руслан Яруллин раскроют детали, как мы боролись с препятствиями во время обучения и фейлах на первых попытках. В конце поделимся статистикой, показывающей, какой положительный эффект оказал бот на работу сотрудников.
!Это перевод статьи Clean Code in Python. В данной статье Nik Tomazic рассказывает о чистом коде, его преимуществах, различных стандартах и принципах, но что самое главное– он дает общие рекомендации по написанию чистого кода. Прочитав данную статью в оригинале, я понял, что это именно то, что я хотел бы прочитать в самом начале своего пути разработки на Python.
Вы когда-нибудь сталкивались с тем, что языковая модель, даже лучшая, типа GPT-4 или Клод, не соблюдает строгий формат ответа? Например, выдаёт неверный JSON или добавляет лишние поля, что приводит к сбоям в сервисе? Эти проблемы могут вызывать значительные трудности при интеграции с другими системами, требуя сложных обходных решений и усложняя логику обработки данных. На этом докладе я покажу, как можно заставить модели строго следовать заданным форматам ответов. Я расскажу, как использовать современные фреймворки для контролируемой генерации, чтобы гарантировать выдачу корректных структурированных данных, будь то JSON, код или любые другие форматы. Доклад будет полезен не только специалистам по языковым моделям, но и разработчикам, знакомым с простыми концепциями конечных автоматов. Вы увидите, как эти известные алгоритмы в сочетании с языковыми моделями дают интересные результаты. Кроме того, я объясню дополнительные преимущества контролируемой генерации, такие как zero-shot классификация, вызов внешних функций и ускорение генерации.
Рубль, вложенный в тестирование библиотеки, даёт сильно больше велью, чем тот же рубль, вложенный в тесты бизнес-логики. Если пренебречь тестированием, карточный домик из абстракций легко рассыпается. Давайте разберёмся, как сделать так, чтобы как можно больше домиков не сыпались.
JIT или не JIT? Вот в чём вопрос. Python — язык с многолетней историей. И на протяжении всей своей истории он не был фаворитом в вопросах производительности. Было много разных попыток приблизиться к решению этой проблемы, в том числе и с добавлением JIT (pypy, numba, etc.), но у большинства из них был фатальный недостаток. Они были инструментами для решения конкретных проблем, про которые вспоминали, только когда других вариантов уже не осталось, когда уже не жалко инвестировать дополнительное время в ускорение узкий мест и переписывание кода. Но что же нам предвещает добавление JIT в коробочную версию cpython? Мы получим бесплатное ускорение всех наших программ и возрадуемся или всё не так просто? Давайте попробуем разобраться вместе.
Я ускорил всё, кроме себя В своём докладе мне хочется дать слушателям самый полный и понятный список лучших решений для всего в бэкендах. Это будет небольшая энциклопедия лучших решений, многие из которых я и коллеги как следует «притёрли» в продакшене. Фреймворки, библиотеки, сервера, даже немного десктоп софта, сравнения — будет всё, а на что-то мы и вовсе посмотрим с неожиданных сторон.