Собрали в одном месте самые важные ссылки
читайте нас в Twitter
После 18-го февраля начнется открытый и бесплатный курс "Deep Learning на пальцах".
Курс предназначен для того, чтобы разобраться с современным deep learning с нуля, и не требует знаний ни нейросетей, ни machine learning вообще. Лекции стримами на Youtube, задания на Питоне, обсуждения и помощь в лучших русскоязычных DS-сообществах — ODS.ai и ClosedCircles.
После него вы не станете экспертом, но поймете про что все это, сможете применять DL на практике и будете способны разбираться дальше сами. Ну, в лучшем случае.
Одновременно и в том же объеме курс будет читаться для магистрантов Новосибирского Государственного Университета, а также студентов CS центра Новосибирска.
В этой небольшой заметке расскажу о двух подводных камнях, с которыми как легко столкнуться, так и легко о них разбиться.
Речь пойдет о создании тривиальной нейронной сети на Keras, с помощью которой будем предсказывать среднее арифметическое двух чисел.
Казалось бы, что может быть проще. И действительно, ничего сложного, но есть нюансы.
Кому тема интересна, добро пожаловать под кат, здесь не будет долгих занудных описаний, просто короткий код и комментарии к нему.
Статья предназначена для тех, кто когда-либо интересовался вопросом о том что же происходит внутри искусственной нейронной сети (artificial neural network) — ИНС. Сейчас разработать собственную ИНС может практически каждый используя уже готовые библиотеки, в большинстве языков программирования. В рассматриваемой статье я постараюсь показать как именно выглядит объект (Паттерн) проходящий через слои ИНС, разработанной и скомпилированной при помощи библиотеки глубокого обучения Tensorflow с надстройкой Keras.
В рамках предыдущей статьи мы рассказали про такую проблему машинного обучения, как Adversarial примеры и некоторые виды атак, которые позволяют их генерировать. В данной статье речь пойдет об алгоритмах защиты от такого рода эффекта и рекомендациях по тестированию моделей.
Рано или поздно перед разработчиками встаёт задача удаления ненужных данных. И чем сложнее сервис, тем больше нюансов необходимо учесть. В данной статье я расскажу, как мы реализовали «удаление» в базе данных с сотней связей. Читать дальше →
Ингода динамическая типизация Python позволяет писать код, который просто писать, но довольно сложно читать и, как следствие, поддерживать.
В этой статье я хочу рассмотреть паттерн Data Transfer Object (DTO) который зачастую помогает сделать код более читабельным.
Это восьмая подборка советов про Python и программирование из моего авторского канала @pythonetc.
У нас было 14 000 объектов, zabbix, api, python и нежелание добавлять объекты руками. Под катом — о том, как сетевиками внедрялся мониторинг с автоматическим добавлением узлов сети, и немного про боль, через которую пришлось пройти.
Статья больше ориентирована на сетевых инженеров с небольшим опытом в python. В помощь при автоматизации мониторинга и улучшения качества жизни и работы, в отсутствии необходимости руками актуализировать весь парк объектов.
Работа над повышением производительности Питона продолжается.
В первой части был рассмотрен протокол обмена пейджерными сообщениями POCSAG. Были рассмотрены цифровые сообщения, перейдем теперь к более «полноценным» сообщениям в формате ASCII. Тем более, что декодировать их интереснее, т.к. на выходе будет читаемый текст.
В процессе ремонта возникла задача сделать проходной выключатель. Конечно же захотелось сделать самым простым и удобным способом, добавив базовые функции управления с телефона. Я выбрал наиболее простую и удобную технологию для этого (конечно, на свой взгляд) — MicroPython, и начал делать. Взял готовую плату на esp8266 и выделил час свободного времени на это. Но, как это бывает с не очень популярными и не обкатанными проектами, задача немного затянулась.
Как выяснилось, та конструкция, которую я посчитал наиболее удобной, оказывается, вообще не работает. Пришлось затратить какое-то время на разбор этого, в дополнение я решил достаточно подробно описать весь процесс. Объем статьи начал увеличиваться большими темпами, так что я решил разделить её на части и выбросить все излишние на мой взгляд подробности.
Давным-давно, когда мобильный телефон стоил 2000$ и минута звонка стоила 50 центов, была такая популярная штука как пейджинговая связь. Затем связь стала дешевле, и пейджер сначала превратился из престижного атрибута делового человека в непрестижный атрибут курьера или секретаря, а затем эта технология практически и вовсе сошла на нет.
Рассмотрим применение пакета scipy.csgraph на примере детской игры "Лесенки слов", придуманной Льюисом Кэрроллом в Рождество 1877 года. В этой игре нужно найти путь между словами, проводя замену по одной букве за раз.
Каждый год у нас проводится конкурс новогодних украшений, и каждый раз мы ничего не украшаем, а пилим всякие технологичные штуки. В этот раз скрестили дрон и Smart TV-приложение. А что из этого получилось — читайте ниже.
Идея была вполне реализуема. Хотели сделать квадрокоптер в виде саней Деда Мороза, который бы сам и под музыку развозил по офису подарки для сотрудников. При этом ориентироваться в пространстве он должен был с помощью анализа ArUco-меток, взаимодействуя с приложениями для телевизоров («сдувание» работающими винтами дыма из труб, выбегание зверушек для встречи/провожания квадрокоптера).
SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab. В этом посте я хотел бы рассказать о возможностях пакета ввода/вывода scipy.io, который позволяет работать с файлами данных Octave и MATLAB.
Эта статья — об одном из лучших изобретений Python: именованном кортеже (namedtuple). Мы рассмотрим его приятные особенности, от известных до неочевидных. Уровень погружения в тему будет нарастать постепенно, так что, надеюсь, каждый найдёт для себя что-то интересное. Поехали!
Представляю вашему вниманию перевод главы из книги Hands-On Data Science with Anaconda
«Предиктивная аналитика данных — моделирование и валидация»
15-16 февраля в Минске состоится PyCon Belarus 2019 — конференция, посвященная разработке на Python и Data Science. 15 февраля. Junior Day — доклады и воркшопы для новичков в питоне и джуниоров. 16 февраля.
Advanced Day — два потока докладов для продвинутых Python-разработчиков и data scientist-ов:
🔴 ML/DS: Luigi, GeoPython, Data Visualization
🔴 Python development: Deployment-Friendly Apps, Application Security, Testing & Legacy, GraphQL, Poetry, Flit, Pipenv
Обработка естественного языка (NLP) — активно развивающаяся научная дисциплина, занимающаяся поиском смысла и обучением на основании текстовых данных. Неважно, кто вы — опытный Data Scientist, или начинающий Python разработчик — вы всегда можете использовать текстовые данные для того, чтобы усовершенствовать продукт над которым работаете и расширить его функциональность. В докладе, на примере сайта кулинарных рецептов, будут описаны шаги преобразования и очистки данных. Исследованы методы классификации и определения сходства текстов на основе: Mean word2vec, Tf-idf weighted word2vec, Doc2vec, fastText, Word Mover’s Distance. Сравнение качества итоговых моделей. Также поговорим про внедрения в проект моделей классификации и рекомендаций