Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Новая подборка советов про Python и программирование из авторского канала @pythonetc.
В прошлом году появилась необходимость дополнить старый проект написанный на C функционалом на python3. Не смотря на то, что есть статьи на эту тему я помучился и в том году и сейчас когда писал программы для статьи. Поэтому приведу свои примеры по тому как работать с python3 из C под Linux (с тем что использовал). Опишу как создать класс и вызвать его методы, получить доступ к переменным. Вызов функций и получение переменных из модуля. А также проблемы с которыми я столкнулся и не смог их понять.
«Путь Python» позволяет отточить ваши профессиональные навыки и узнать как можно больше о возможностях самого популярного языка программирования. Вы научитесь писать эффективный код, создавать лучшие программы за минимальное время и избегать распространенных ошибок. Пора познакомиться с многопоточными вычислениями и мемоизацией, получить советы экспертов в области дизайна API и баз данных, а также заглянуть внутрь Python, чтобы расширит понимание языка. Вам предстоит начать проект, поработать с версиями, организовать автоматическое тестирование и выбрать стиль программирования для конкретной задачи. Потом вы перейдете к изучению эффективного объявления функции, выбору подходящих структур данных и библиотек, созданию безотказных программ, пакетам и оптимизации программ на уровне байт-кода.
Проект предназначен для создания «Феерического» хранителя экрана с минимальным количеством исходного кода на языке Python. Проект является простейшим плагином для мультимедиа центра Kodi.
Представляю вам главную help-ссылку для работы с данными. Материал в Гугл-доке подойдет как профессионалам, так и тем, кто только учится работать с данными. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.
Дальнейшее описание поста — это содержание help-ссылки. Поэтому, можете сразу ознакомиться с документом. Либо начать с её содержания, которую прикрепляю ниже.
С удовольствием сообщаем, что в наших издательских планах на начало будущего года — превосходная новая книга по глубокому обучению «Generative Deep Learning» от Дэвида Фостера
Статья о том, как добавить статус онлайн у пользователя. Поможет другим пользователям видеть, на сайте ли сейчас их друзья и знакомые. Для этого немного препарируем Backend аутентификации.
Как то раз была у меня «работа» — нужно было сделать управление кассовым аппаратом Штрих-ФР-К. Так как моя карьера начиналась с ремонта ККТ, торешил взяться за эту работу.
За полным списком новых полезных инструментов, статей и докладов можно обратиться в мой телеграм канал @OpensourceFindings (по ссылке зеркало, если не открывается оригинал).
В сегодняшнем выпуске.
Технологии внутри: Python, Rust, JavaScript, Go.
Тематика: веб разработка, администрирование, инструменты разработчика.
Решил поделиться, да бы и самому не забывать, как можно использовать простые статистические инструменты для анализа данных. В качестве примера использовался анонимный опрос относительно зарплат, стажа и позиций украинских программистов за 2014 и 2019 год. (1)
Перевод статьи "TensorFlow Tutorial: 10 minutes Practical TensorFlow lesson for quick learners" автора Ankit Sachan.
Этот туториал по TensorFlow предназначен для тех, кто имеет общее представление о машинном обучении и пытается начать работу с TensorFlow.
Прежде всего у вас должен быть установлен TensorFlow. Вы можете его установить по этому руководству. Этот урок разделен на две части: в первой части мы объясняем основы на рабочем примере, во второй части мы строим модель линейной регрессии.
Юлия постаралась ответить на вопрос, почему у разработчиков не получается писать автотесты, даже если они этого хотят, и как это преодолеть.
Python давно умеет в веб и часто крутится на серверной стороне, но его не так часто можно увидеть на клиентских машинах. В рамках доклада Алексей поведал о Brython и Pyodide, с их помощью были рассмотрены варианты использования Python и его библиотек в браузере.
Все мы любим, когда наше приложение работает быстро, обрабатывает много запросов, и код для него приятно и удобно писать. В асинхронном мире python для этих целей существуют такие фреймворки как tornado, aiohttp и sanic. Но так ли они хороши как популярны? Есть ли другие инструменты, способные с ними потягаться? За счет каких опций одни предпочтительней других? В своем докладе Алексей постарался дать ответы на эти вопросы.
Однажды в одном из проектов в мои руки попал фискальный принтер. Мы каждый день сталкиваемся с этими устройствами, когда совершаем платежи в магазинах, но мало кто догадывается что на самом деле они из себя представляют. Не буду вдаваться в подробности их работы, просто скажу, что это такие штучки, которые печатают чеки с данными о покупке на специальной термобумаге (да-да, почти во всех фискальных принтерах нет чернил!).
Я должен был разобраться как получить состояние функционирования фискального принтера и его внутренние параметры настройки. Задача давно выполнена, а фискальный принтер был надолго заброшен в дальний угол… Пока в мою голову не пришла идея немного покреативить :D
Сегодня я хотел бы поговорить о распаковке вложенных списков неопределённой глубины. Это достаточно нетривиальное занятие, поэтому я бы хотел рассказать тут о том, какие реализации есть, их плюсы и минусы и сравнение их производительности.
Однажды, исследуя глубины интернета, я наткнулся на видео, где человек обучает змейку с помощью генетического алгоритма. И мне захотелось так же. Но просто взять все то же самое и написать на python было бы не интересно. И я решил использовать более современный подход для обучения агентных систем, а именно Q-network. Но начнем с начала.
Предположим, ваша Python-программа оказалась медленной, и вы выяснили, что это лишь отчасти обусловлено нехваткой процессорных ресурсов. Как выяснить то, какие части кода вынуждены ожидать чего-то такого, что не относится к CPU?
«Консультант+» — справочная система для юристов, бухгалтеров и так далее. Работает стабильно, как часы. В этом посте предлагается немного эти часы настроить под свои нужды в части выдачи текста, а именно: взглянуть как можно переработать с помощью python текстовую информацию, которую выдает система. Попутно поработать с элементами текста, заявленными в заголовке.