Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Реализация объектно-ориентированного программирования (ООП) в языках Java и Python отличается. Принцип работы с объектами, типами переменных и прочими языковыми возможностями может вызвать затруднение при переходе с одного языка на другой. В данной статье, которая может быть полезной как для Java-программистов, желающих освоить Python, так и для Python-программистов, имеющих цель лучше узнать Java, приводятся основные сходства и отличия этих языков, применительно к ООП.
На сайте ФНС по адресу egrul.nalog.ru/index.html есть замечательный сервис проверки контрагентов или своих собственных обществ.
Суть проверки сводится к подаче запроса в ЕГРЮЛ (единый реестр фактов детальности юридических лиц) и получении тут же, онлайн, выписки из реестра.
Работа с сервисом не вызывает каких-либо затруднений: внес в поле ОГРН, нажал кнопку “Найти” и нажал кнопку “Скачать” ниже. Все, выписка получена.
Как здесь может помочь автоматизация? Очень просто.
Приятно, что в последнее время появляется много книг не просто о языке Python, но и о применении его в более узких областях. Меня в первую очередь интересуют инженерные расчеты, в которых практически стандартом являются библиотеки Numpy, SciPy и Matplotlib. На эту тему мне попадалось несколько книжек, но, к сожалению, все они страдают одной проблемой — после них нельзя сказать, что ты знаешь, например, Numpy.
Это небольшое руководство предназначено для пользователя Django, который хочет настроить приложение Django c веб-сервером в производственной среде.
Мы автоматизируем показ рекламы в интернете. Наши системы принимают решения не только на основе исторических данных, но и активно используют информацию, полученную в реальном времени.
Думаю, статья будет интересна всем, кто пользуется Notion, но по какой-то причине не мог переехать на него полностью.
Я разрабатываю свой проект. На лэндинге после ввода емейла выдается ссылка на соцопрос на базе Google Forms. Ответы записываются в табличечку на Google Drive.
Проблема в том, что все свое я ношу с собой сохраняю в Notion. Это банально удобней. Обходился ручным копипастом, пока отзывов было мало. Потом их стало больше — и надо было что-то придумать. Кому интересно, что вышло — добро пожаловать под кат.
Перевод обзорной статьи: Guest Contributor Overview of Async IO in Python 3.7
В сообществе OpenDataScience успешно развивается инициатива ML4SG — Machine Learning for Social Good. В её рамках стартовал целый ряд интересных проектов, которые в самых разных областях улучшают нашу с вами жизнь.
Мы хотели бы рассказать об одном из таких проектов под кодовым названием #proj_shipwrecks.
В рамках проекта мы стремимся помогать людям, занимающимся разного рода морскими исследованиями, от морских археологов, биологов и океанологов до команд спасения на воде, используя как свою экспертизу в области компьютерного зрения, так и придумывая новые, порой неожиданные ходы.
Предлагаем вашему вниманию «выездной» выпуск Moscow Python Podcast, записанный на Knowledge Conference 2019. Учитывая тематику конференции, на сей раз мы сосредоточились не только на культуре кодинга и подходах к разработке, но и на том, как различные практики закрепляются (или не закрепляются) в Python-сообществе.
Автоматические системы модерации внедряются в веб-сервисы и приложения, где необходимо обрабатывать большое количество сообщений пользователей. Такие системы позволяют сократить издержки на ручную модерацию, ускорить её и обрабатывать все сообщения пользователей в real-time. В статье поговорим про построение автоматической системы модерации для обработки английского языка с использованием алгоритмов машинного обучения. Обсудим весь пайплайн работы от исследовательских задач и выбора ML алгоритмов до выкатки в продакшен. Посмотрим, где искать готовые датасеты и как собрать данные для задачи самостоятельно.
На производстве важно следить за качеством продукции, причем как приходящей от поставщиков, так и той, что мы выдаем на выходе. Для этого у нас часто проводятся пробоотборы — специально обученные сотрудники берут пробоотборники и по имеющейся инструкции собирают пробы, которые затем передают в лабораторию, где их и проверяют на качество.
QlikView и его младший брат QlikSense — замечательные BI инструменты, достаточно популярные у нас в стране и "за рубежом". Очень часто эти системы сохраняют "промежуточные" результаты своей работы — данные, которые визуализируют их "дашборды" — в так называемые "QVD файлы". Часто QVD файлы используются в качестве основного хранилища в многоэтапных ETL процессах, построенных на базе Qlik. И тогда у некоторых (у меня, например, — я занимаюсь в компании вопросами инженерии данных) возникает вопрос — можно ли и как воспользоваться этими данными без QlikView/QlikSense? Или другой — а что там и правильно ли "оно" посчиталось?
Сегодня мы обсудим, зачем кому-то понадобилось писать замену стандартному питонячему логеру logging и как этой штукой пользоваться.
Так уж сложилось, что на Python пишут много веб-приложений. Эту нишу Python разработки почти полностью поделили между собой два здоровых игрока — Django и Flask. Поэтому большой процент программистов, пишущих на Python, заточен на работу с этими двумя фреймворками.
По этой причине у многих Python-разрабов складывается некое подобие тунельного зрения — их инженерный подход заперт между этими двумя библиотеками.
Если вы когда-нибудь работали с такими низкоуровневыми языками, как С или С++, то наверняка слышали про указатели. Они позволяют сильно повышать эффективность разных кусков кода. Но также они могут запутывать новичков — и даже опытных разработчиков — и приводить к багам управления памятью. А есть ли указатели в Python, можно их как-то эмулировать?
Как сделать решатель (солвер) нонограмм на Python, переписать его на Rust, чтобы запускать прямо в браузере через WebAssembly.
На Boosters.pro в течении двух месяцев с 18 февраля по 18 апреля проходило соревнование по построению рекомендательной системы на реальных данных одного из крупнейших российских онлайн-кинотеатров Okko. Организаторы преследовали цель улучшить существующую рекомендательную систему. На данный момент соревнование доступно в режиме песочницы, в которой вы можете проверить свои подходы и отточить навыки в построении рекомендательных систем.