Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Хотели ли вы написать приложение с графическим интерфейсом для своего ноутбука? А как на счёт телефона? Это всегда была задача трудно решаемая Питоном, и нерешаемая без знания различных программных интерфейсов на разных платформах. Но не теперь.
BeeWare — набор инструментов и библиотек, позволяющий создавать кроссплатформенные приложения с родным графическим интерфейсом для настольных, мобильных и веб платформ на чистом Питоне.
Это выступление познакомит вас с инструментарием BeeWare, и поможет разобраться в том, как вы можете использовать его для того, чтобы с нуля создать программу ChatBot, которое можно будет запустить как самостоятельное приложение и на компьютере, и на телефоне, и как одностраничное веб-приложение, при этом используя единую кодовую базу.
Хочу поделиться опытом работы с камерой Intel RealSense, модель d435. Как известно, многие алгоритмы машинного зрения требуют предварительной калибровки камеры. Так уж получилось, что мы на нашем проекте используем ROS для сборки отдельных компонентов автоматизированной интеллигентной системы. Однако, проштудировав русскоязычный интернет, я не обнаружил каких-либо толковых туториалов на эту тему. Данная публикация призвана восполнить этот пробел.
Если вы всё ещё думаете на тему нужен ли Python 3, вот вам ещё один аргумент.
Хакатон "Цифровой завод", организованный Сибуром и AI Community, состоялся на прошлых выходных. Одна из двух задач хакатона была на тему predictive maintenance — нужно было предсказывать проблемы в работе экструдера. Её мы и решили. Рассказ сосредоточен в основном на data science'ной части решения, и о том, как нам удалось научиться неплохо прогнозировать довольно редкие события.
Мы, наконец, дождались еще одной части серии материалов от выпускника наших программ “Специалист по большим данным” и “Deep Learning”, Кирилла Данилюка, об использовании популярных на сегодняшний день нейронных сетей Mask R-CNN как части системы для классификации изображений, а именно оценки качества приготовленного блюда по набору данных с сенсоров.
Рассмотрев в предыдущей статье игрушечный набор данных, состоящий из изображений дорожных знаков, теперь мы можем перейти к решению задачи, с которой я столкнулся в реальной жизни: «Возможно ли реализовать Deep Learning алгоритм, который мог бы отличить блюда высокого качества от плохих блюд по одной фотографии?». Вкратце, бизнес хотел вот это:
Ссылки на предыдущие части:
Это двадцать третья часть Мега-Учебника, в которой я расскажу вам, как расширить микроблог с помощью интерфейса прикладного программирования (или API), который клиенты могут использовать для работы с приложением более прямым способом, чем традиционный рабочий процесс веб-браузера.
Скоро будет выпущена технология предоставляющая Qt для Python о чём рассказали в блоге Qt Company. Речь идёт о PySide2, которая явяется официальным аналогом PyQt .
Рассмотрим создание не сложного приложения показывающего простоту Qt для Python с использованием виджетов QWidgets
Медленные тесты не только тратят время разработчиков на ожидание, но и усложняют следование лучших практик TDD (red-green testing). Когда тестовый набор выполняется несколько минут или дольше - это приводит к тому, что весь набор тестов запускают редко и баги, которые можно было бы исправить раньше и быстрее, откладываются.
В этом посте я расскажу как ускорить тесты вашего Django приложения и рассмотрю, что убивает скорость ваших тестов. В качестве примера буду использовать простой набор тестов, который вы можете найти на GitHub.
В этот раз снова о Data Science. Думаю, многим знакома методология CRISP-DM, о которой говорят на большинстве курсов, но вот про первый пункт (business understanding) информации достаточно мало, в зря, ведь он очень важный.
Поэтому в этой статье мы поговорим о взаимодействии с бизнесом и о том, какие обычно бывают проблемы и сложности в этом вопросе. Давайте разберем все на примере.
В течение последних нескольких лет интерес к технологиям машинного обучения и искусственного интеллекта быстро рос. Решение H2O.ai становится все более популярным в этой сфере: оно поддерживает быстрые алгоритмы машинного обучения в оперативной памяти и недавно получило поддержку глубокого обучения. Сегодня поговорим о разработке с использованием H2O.
Мы поговорим об использовании модных «Word embedding» не совсем по назначению — а именно для исправления опечаток (строго говоря, и ошибок тоже, но мы предполагаем, что люди грамотные и опечатываются). На хабре была довольно близкая статья, но здесь будет немного о другом. Визуализация Word2Vec модели, полученная студентом. Обучалась на «Властелине колец». Явно что-то на черном наречии.
Этой статьей я начинаю серию рассказов о состязательных сетях. Как и в предыдущей статье я подготовил соответствующий докер-образ в котором уже все готово для того чтобы воспроизвести то что написано здесь ниже. Я не буду копировать весь код из примера сюда, только основные его части, поэтому, для удобства советую иметь его рядом для более простого понимания. Докер контейнер доступен здесь, а ноутбук, utils.py и докерфайл здесь.
Все же знают, что такое Рамблер/топ-100? На всякий случай — это сервис веб-аналитики. Наши пользователи ставят себе на сайты счетчик, ну а мы в свою очередь готовим всю необходимую статистику посещений в виде набора стандартных отчетов. Под катом рассказ Виталия Самигуллина, руководителя группы разработки технологий Рамблер/топ-100, о том, как мы разрабатывали API ClickHouse на Python и зачем вообще всё это затевали.
Ранее я представил пару небольших постов о потенциальной роли Spring Boot 2 в реактивном программировании. После этого я получил ряд вопросов о том, как работают асинхронные операции в программировании в целом. Сегодня я хочу разобрать, что такое Non-blocking I/O и как применить это знание для создания небольшого tcp–сервера на python, который сможет обрабатывать множество открытых и тяжелых (долгих) соединений в один поток. Знание python не требуется: все будет предельно просто со множеством комментариев. Приглашаю всех желающих!
Провели на прошлой неделе открытый вебинар про вторую и третью версию. На нём создатель курса Стас Ступников разбирал нюансы миграции между версиями, отличия в производительности, новые особенности, да и вообще общался и отвечал на вопросы слушателей.
Я играю в Heroes of Might and Magic со времен царя Гороха королевы Ламанды, и за это время накопилось такое количество карт для 3-х Героев, что я решил их как-то упорядочить и структурировать.