Собрали в одном месте самые важные ссылки
читайте авторский блог
Пожалуй, можно описать с помощью программного кода почти все, что нас окружает. И хорошо, что почти, это позволяет нам не погружаться полностью в матрицу. Да, еще довольно трудно запрограммировать поведение отдельно взятых политиков, ведь как можно описать то, что не поддается логике? А вот мудрость, как противовес этому — можно.
• Существенным образом видоизменена компоновка функциональных блоков программы для повышения её эргономичности.
• Увеличена скорость генерации динамических страниц за счёт оптимизации запросов к базе данных.
• Улучшена гибкость поиска по номеру расходника. Теперь возможен поиск по фрагменту номера.
• Добавлен фильтр по наименованиям.
• Реализована выгрузка результатов работы отчётов в CSV файл для последующей работы в табличном процессоре.
• Исправления замеченных ошибок.
• Добавлена возможность буферизации расходников в специальную область для генерации наклеек.
• Улучшена подробность отчётов.
Разбираясь со Spark Apache, столкнулся с тем, что после достаточно небольшого усложнения алгоритмов подготовки данных расчеты стали выполняться крайне медленно. Поэтому захотелось реализовать что-нибудь на C# и сравнить производительность с аналогичным по классу решением на стеке python (pandas-numpy-skilearn). Аналогичным, потому что они выполняются на локальной машине. Подготовка данных на C# осуществлялась встроенными средствами (linq), расчет линейной регрессии библиотекой extremeoptimization.
Немного людей которые никогда не играли в настольные экономические игры, такие как монополия, рынок, миллионер. Мы с друзьями играли в них дни на пролёт. Со временем, после зазубривания всех правил, и десятков сыгранных партий, хотелось чего-то большего. И мы начали рисовать игры сами. Сначала маленькие, и в большей степени копирующие возможности тех игр, что мы выдели раньше, но потом приходили и свои идеи. В конце доходило до того, что игра располагалась на 9 листах формата А4, а её правила были настолько нетерпимыми к новичкам, что кроме нас никто не мог научиться в неё играть (хотя в монополию со мной играли родители). Там было много всего, строительство, экономика, игровое взаимодействие (например подставы или взаимопомощь). Десятки видов оружия, машин. Чтобы стрелять нужны были патроны. С некоторыми ранениями можно было продолжать играть, с другими путь в больницу, и т.п.
Хочу поделиться опытом портирования проекта с Python 2.7 на Python 3.5. Необычными засадами и прочими интересными нюансами.
Обычно в статьях про финтех пишут о том, как работают биржи, которые обрабатывают огромные объемы данных на огромных скоростях, о том, как гениальные трейдеры и кванты используют отточенные алгоритмы, чтобы зарабатывать (или терять, бывает всякое) миллиарды долларов, или о работе блокчейна, обеспеченной сложными математическими выкладками. Все это создает впечатление, будто уровень входа в финтех-разработку запредельно высок. И отчасти оно правдиво — требования к разработчикам высоконагруженных финансовых приложений строги и специфичны.
Но все начинали с малого, и мы считаем, что любой заинтересованный человек способен создать приложение в финансовой сфере. Попробуем разработать собственное небольшое приложение, которое станет полезным для пользователей уже через полчаса.
Это краткое руководство и обучение по фронтэнеду для бэкендера. В данном руководстве я решаю проблему быстрого построения пользовательского интерфейса к серверному приложению в виде одностраничного веб-приложения (single page app).
Elizabeth — это библиотека для языка программирования Python, которая помогает генерировать фиктивные данные. Один из простейших примеров использования библиотеки — это заполнение баз данных для приложений на Flask или Django. На данный момент библиотека поддерживает 16 языковых стандартов и 18 классов-провайдеров, предоставляющих разного рода данные.
На днях дочитал книгу Лучано Рамальо «Python. К вершинам мастерства». Пожалуй, это лучшая техническая книга, которая мне попадалась за последние время. Это объемная книга, содержащая 768 страниц, но при этом читается она достаточно легко. Сразу надо сказать, что книга Рамальо — не учебник для начинающих, вы уже должны знать Python хотя бы на начальном уровне, представлять себе, что такое объектно-ориентированное программирование и иметь хотя бы общее представление о шаблонах проектирования.
Иногда при использовании библиотеки Matplotlib требуется добавить возможность пользователю взаимодействовать с нарисованным графиком — выделять интересующие области, перетаскивать объекты на графике и т.п. Для подобных задач библиотека Matplotlib позволяет обрабатывать различные события, связанные с действиями мышью и нажатиями клавиш.
Всё началось, как и многие другие расследования, с баг-репорта.
Название отчёта было довольно простым: «При HTTP-подключении iter_content медленно работает с чанками большого размера». Подобное название немедленно включило у меня в голове сирену по двум причинам. Во-первых, довольно сложно определить, что здесь означает «медленно»? Насколько медленно? Насколько велик «большой размер»? Во-вторых, если бы описанное проявлялось действительно серьёзно, то мы бы об этом уже знали. Метод iter_content используется давно, и если бы он существенно притормаживал в распространённом пользовательском режиме, то мимо нас такая информация не прошла бы.
Для одной из задач мне понадобился синтаксический анализатор русскоязычных текстов. Что это такое. Например, у нас есть предложение «Мама мыла раму». Нам нужно получить связи слов в этом предложении в виде дерева.
Из этого дерева понятно, что связаны слова «мама» и «мыла», а также «мыла» и «раму», а слова «мама» и «раму» напрямую не связаны.
asyncpg — новая Python open-source библиотека для работы с PostgreSQL. Она была написана с использованием asyncio и Python 3.5. asyncpg — самый быстрый драйвер для работы с PostgreSQL среди похожих реализаций на Python, NodeJS и Go.
2048 — игра появившаяся в 2014ом году и быстро ставшая популярной убивалкой времени. Простые правила игры только подталкивают игроков к созданию клонов, ботов и выигрышных стратегий. В том числе и на Хабре. (Клон, бот, стратегия) В этой статье рассказывается про удобный инструмент оценки стратегий игры и примеры его работы на нескольких ботах.
О новых возможностях, предлагаемых setuptools, для декларативного конфигурирования пакетов ваших приложений на Питоне.
Рад сообщить, что, начиная с версии 30.4.0 setuptools поддерживает конфигурирование пакетов приложений в файлах конфигурации, например, setup.cfg.
Python обладает рядом привлекательных преимуществ к которым относится простота реализации программных решений, наглядность и лаконичность кода, наличие большого числа библиотек и многочисленного активного комьюнити. В то же время, известная всем медлительность питона часто ограничивает его применимость для “тяжелых” вычислений. Для ряда задач можно добиться существенного ускорения расчетов путем использования технологии CUDA для параллельных вычислений на GPU. Цель этого небольшого исследования — анализ возможностей эффективного использования python для расчетов на GPU и сравнение производительности различных python-решений с реализацией на C.
Александр Боргардт
Расскажет всё о периодических задачах. Объяснит, зачем вам нужно знать, где и когда они запускаются. По полочкам разложит специфику запуска периодических задач на кластере и покажет разные способы их запуска.
Слайды: http://www.moscowpython.ru/meetup/40/zapuskaem-periodicheskie-zadachi-pravilno/
Дмитрий Ермолаев
Объяснит, как устроен платёжный сервис 7Pay.in (сайт, на котором можно купить биткоины и оплатить биткоинами разные услуги).
Слайды: http://www.moscowpython.ru/meetup/40/python-web2py-i-sajt-platezhej/
Александр Хаёров
Поделится техническим докладом с кодом и командами и покажет, как развернуть свой первый проект в GAE. Продемонстрирует, как адаптироватьDocker Cats vs Dogs voting application к разворачиванию в PaaS и проведёт слушателей по процессу разворачивания.
Слайды: http://www.moscowpython.ru/meetup/40/razvorachivaem-prilozhenie-v-appengine/
Парсером называется часть программы, которая из линейной последовательности простых данных строит более сложные структуры данных с учетом некоторой грамматики.