Собрали в одном месте самые важные ссылки
читайте нас в Telegram
СУБД Neo4j — это NoSQL база данных, ориентированная на хранение графов. Изюминкой продукта является декларативный язык запросов Cypher.
Cypher позаимствовал ключевые слова типа WHERE, ORDER BY из SQL; синтаксис из таких разных языков как Python, Haskell, SPARQL; и в результате появился язык, позволяющий делать запросы к графам в визуальной форме наподобие ASCII art. Например, заголовок данной статьи я бы представил в виде графа (Neo4j) — [изучаем] -> (Wordnet). И это почти готовый запрос к базе данных!
Формулировка задачи: визуализировать все связи между двумя пользователями внутри одной социальной сети. При этом связи не должны дублироваться, например если Ваня знает Петю через Олю, то Оля в дальнейших итерациях по поиску общих друзей не участвует. Чтобы попрактиковаться в API, я выбрал “Вконтакте”.
Порой возникают задачи, когда возникает необходимость формировать отчеты и прочие документы. В моей практике данная задача возникала не раз.
Проекты, в которых возникала данная задача:
В наши дни большинство веб-приложений используют AJAX технологии. Когда страница загружена в браузере, элементы на этой странице могут подгружаться с различными временными интервалами. Это затрудняет поиск элементов, если элемент не присутствует в DOM, возникает исключение ElementNotVisibleException. Используя ожидания, мы можем решить эту проблему. Ожидание дает некий временной интервал между произведенными действиями — поиске элемента или любой другой операции с элементом.
Selenium WebDriver предоставляет два типа ожиданий — неявное (implicit) и явное (explicit). Явное ожидание заставляет WebDriver ожидать возникновение определенного условия до произведения действий. Неявное ожидание заставляет WebDriver опрашивать DOM определенное количество времени, когда пытается найти элемент.
Предлагаю вашему вниманию перевод публикации Laurent Luce о реализации работы со списками в CPython. Она может быть полезна начинающим программистам на Python, либо готовящимся к собеседованию.
Эта статья описывает реализацию объекта списка в CPython, наиболее популярной реализации Python. Списки в Python — это мощный инструмент, и интересно узнать, как они устроены внутри. Взгляните на простой скрипт, который добавляет несколько целых значений в список и выводит их:
Понадобилось мне однажды у себя в проекте реализовать работу с файловым хранилищем с использованием HTTP REST API. Проект разрабатывается на python, к тому же уже был реализован http-клиент с использованием библиотеки httplib2, поэтому было решено расширить функциональность http-клиента и работать с файловым хранилищем через туже библиотеку. Проблема возникла при загрузке файлов на сервер. Первый PUT запрос выполняется, далее все последующие запросы отказываются выполняться — 500Internal Server Error.
Python отлично подходит для написания самых различных серверных утилит. Часто такие утилиты дополняют CLI (Command Line Interface), а иногда и целым GUI.
Но как его сделать? На сервере часто нет X сервера. нет Qt и чего-то такого, а Python есть. Возможно вы слышали про ncurses - библиотека для управления IO. Вот ее и можно использовать для такой задачи - стандартная библиотека содержит модуль curses.
База может располагаться на публичном хостинге, т.к. информация расшифровывается на клиенте. Основана на ZODB, позволяет хранить python объекты.
Сегодня я расскажу о не совсем простой концепции быстрого (до часа после нескольких тренировок) развёртывания проекта для работы команды, состоящей как минимум из отдельных фронтенд и бэкенд разработчиков.
Исходные данные у нас такие: начинается разработка проекта, в которой планируется «тонкий бэкенд». Т.е. бэк у нас состоит из закешированных страниц (рендерятся любым шаблонизатором), объёмных моделей с сопутствующей логикой (ORM) и REST API, выполняющего роль контроллера. Фактически, View в такой системе редуцировано и вынесено в JS, благо есть разные реакты, ангуляры и прочие вещи, которые позволяют фронтендщикам считать себя «белыми людьми».
Менеджеры контекста — это механизм стоящий за ключевым словом with.
Ключевое слово with появилось еще в Python 2.5 (через __future__). Такая конструкция пришла на смену концепту setup..try..except..finally
О Twitter нечего писать, проект уже взрослый и известный. Через Твиттер продают, покупают, разыгрывают призы, консультируют, оказывают поддержку проектов, да даже используют как сервис оповещений. Twitter имеет открытый API, который сегодня и освоим. Мы научимся публиковать пост с изображением через Twitter API
Спешим поделиться видеозаписями выступлений с очередной встречи минского Python-сообщества.
Под катом вы найдете доклады:
В рамках научно-исследовательской работы в вузе я столкнулся с такой задачей, как классификация текстовой информации. По сути, мне нужно было создать алгоритм, который, обрабатывая определенный текстовый документ на входе, вернул бы мне на выходе массив, каждый элемент которого являлся бы мерой принадлежности этого текста (вероятностью или степенью уверенности) к одной из заданных тематик.
В данной статье речь пойдет не о решении задачи классификации конкретно, а о попытке автоматизировать наиболее скучный этап разработки рубрикатора — создание обучающей выборки.
Продолжаем предлагать различные задачи для практики. Кто заинтересуется решением этих задач, просим помогать друг-другу. Но при этом в течении недели не кидать ссылок на полностью готовое решение. А также, чтобы читать код было удобно - публикуйте его на https://gist.github.com/ или какой-то подобный сервис.
Описание задачи:
В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другого алгоритма — градиентного спуска.
Суть происходящего в том, что обратное распространение не вносит в работу сети оптимизацию. Оно перемещает неверную информацию с конца сети на все веса внутри, чтобы другой алгоритм уже смог оптимизировать эти веса так, чтобы они соответствовали нашим данным. Но в принципе, у нас в изобилии присутствуют и другие методы нелинейной оптимизации, которые мы можем использовать с обратным распространением:
Модуль shelve из стандартной библиотекой можно описать одной фразой - "pickle + anydbm".
shelve позволяет сериализовать объект (прям как pickle), а потом сохранить его в виде похожем на БД (интерфейс anydbm).
Не редко возникает задача убрать лишние пробелы с начала/конца строки. Например
a = 'Доброе утро, Иван'
message, name = a.split(',')
print(name)
> ' Иван' # (лишний пробел сначала строки)
Не так давно мы начали пару проектов, в которых необходима оптическая система с каналом дальности, и решили для этого использовать Kinect v2. Поскольку проекты реализуются на Python, то для начала нужно было заставить работать Kinect из Python, а затем откалибровать его, так как Kinect из коробки вносит некоторые геометрические искажения в кадры и дает сантиметровые ошибки в определении глубины.
До этого я никогда не имел дела ни с компьютерным зрением, ни с OpenCV, ни с Kinect. Исчерпывающую инструкцию, как со всем этим хозяйством работать, мне найти тоже не удалось, так что в итоге пришлось порядком повозиться. И я решил, что будет не лишним систематизировать полученный опыт в этой статье. Быть может, она окажется небесполезной для какого-нибудь страждущего, а еще нам нужна популярная статья для галочки в отчетности.
Только что обнаружил интересный баг (баг с точки зрения человеческой логики, но не машины), и решил им поделиться с сообществом. Программирую на django уже довольно долго, но с таким поведением столкнулся впервые, так что, думаю, кому-нибудь да пригодится. Что ж, к делу!