Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Эта статья внеплановая. В прошлый раз я рассматривал нюансы и проблемы различных методов нормализации данных. И только после публикации понял, что не упомянул некоторые важные детали. Кому-то они покажутся очевидными, но, по-моему, лучше сказать об этом явно.
Мы рады объявить о релизе Delta Lake 0.4.0, в котором представлен Python API, улучшающий манипулирование и управление данными в Delta-таблицах.
В градиентном бустинге прогнозы делаются на основе ансамбля слабых обучающих алгоритмов. В отличие от случайного леса, который создает дерево решений для каждой выборки, в градиентном бустинге деревья создаются последовательно. Предыдущие деревья в модели не изменяются. Результаты предыдущего дерева используются для улучшения последующего. В этой статье мы подробнее познакомимся с библиотекой градиентного бустинга под названием CatBoost.
Не так давно я писал про волейбольный сервис, теперь пришло время описать его с технической точки зрения.
Возможно, общественное сознание найдет изъяны в архитектуре и подтолкнет к лучшим решениям.
Совсем недавно мы (команда разработчиков KivyMD) создали на GitHub KivyMD-Extension — организацию, в которой размещаются репозитории пользовательских дополнений для библиотеки KivyMD. Это пакеты компонентов, которые не связаны напрямую со спецификацией материального дизайна, но используют под капотом библиотеку KivyMD и существенно расширяют ее. О нескольких таких пакетах я расскажу сегодня.